Spaces:
Running
Running
#!/usr/bin/env python3 | |
"""Command line interface.""" | |
import argparse | |
import contextlib | |
import logging | |
import sys | |
from argparse import RawTextHelpFormatter | |
from typing import Optional | |
# pylint: disable=redefined-outer-name, unused-argument | |
from TTS.utils.generic_utils import ConsoleFormatter, setup_logger | |
logger = logging.getLogger(__name__) | |
description = """ | |
Synthesize speech on the command line. | |
You can either use your trained model or choose a model from the provided list. | |
- List provided models: | |
```sh | |
tts --list_models | |
``` | |
- Get model information. Use the names obtained from `--list_models`. | |
```sh | |
tts --model_info_by_name "<model_type>/<language>/<dataset>/<model_name>" | |
``` | |
For example: | |
```sh | |
tts --model_info_by_name tts_models/tr/common-voice/glow-tts | |
tts --model_info_by_name vocoder_models/en/ljspeech/hifigan_v2 | |
``` | |
#### Single speaker models | |
- Run TTS with the default model (`tts_models/en/ljspeech/tacotron2-DDC`): | |
```sh | |
tts --text "Text for TTS" --out_path output/path/speech.wav | |
``` | |
- Run TTS and pipe out the generated TTS wav file data: | |
```sh | |
tts --text "Text for TTS" --pipe_out --out_path output/path/speech.wav | aplay | |
``` | |
- Run a TTS model with its default vocoder model: | |
```sh | |
tts --text "Text for TTS" \\ | |
--model_name "<model_type>/<language>/<dataset>/<model_name>" \\ | |
--out_path output/path/speech.wav | |
``` | |
For example: | |
```sh | |
tts --text "Text for TTS" \\ | |
--model_name "tts_models/en/ljspeech/glow-tts" \\ | |
--out_path output/path/speech.wav | |
``` | |
- Run with specific TTS and vocoder models from the list. Note that not every vocoder is compatible with every TTS model. | |
```sh | |
tts --text "Text for TTS" \\ | |
--model_name "<model_type>/<language>/<dataset>/<model_name>" \\ | |
--vocoder_name "<model_type>/<language>/<dataset>/<model_name>" \\ | |
--out_path output/path/speech.wav | |
``` | |
For example: | |
```sh | |
tts --text "Text for TTS" \\ | |
--model_name "tts_models/en/ljspeech/glow-tts" \\ | |
--vocoder_name "vocoder_models/en/ljspeech/univnet" \\ | |
--out_path output/path/speech.wav | |
``` | |
- Run your own TTS model (using Griffin-Lim Vocoder): | |
```sh | |
tts --text "Text for TTS" \\ | |
--model_path path/to/model.pth \\ | |
--config_path path/to/config.json \\ | |
--out_path output/path/speech.wav | |
``` | |
- Run your own TTS and Vocoder models: | |
```sh | |
tts --text "Text for TTS" \\ | |
--model_path path/to/model.pth \\ | |
--config_path path/to/config.json \\ | |
--out_path output/path/speech.wav \\ | |
--vocoder_path path/to/vocoder.pth \\ | |
--vocoder_config_path path/to/vocoder_config.json | |
``` | |
#### Multi-speaker models | |
- List the available speakers and choose a `<speaker_id>` among them: | |
```sh | |
tts --model_name "<language>/<dataset>/<model_name>" --list_speaker_idxs | |
``` | |
- Run the multi-speaker TTS model with the target speaker ID: | |
```sh | |
tts --text "Text for TTS." --out_path output/path/speech.wav \\ | |
--model_name "<language>/<dataset>/<model_name>" --speaker_idx <speaker_id> | |
``` | |
- Run your own multi-speaker TTS model: | |
```sh | |
tts --text "Text for TTS" --out_path output/path/speech.wav \\ | |
--model_path path/to/model.pth --config_path path/to/config.json \\ | |
--speakers_file_path path/to/speaker.json --speaker_idx <speaker_id> | |
``` | |
#### Voice conversion models | |
```sh | |
tts --out_path output/path/speech.wav --model_name "<language>/<dataset>/<model_name>" \\ | |
--source_wav <path/to/speaker/wav> --target_wav <path/to/reference/wav> | |
``` | |
""" | |
def parse_args(arg_list: Optional[list[str]]) -> argparse.Namespace: | |
"""Parse arguments.""" | |
parser = argparse.ArgumentParser( | |
description=description.replace(" ```\n", ""), | |
formatter_class=RawTextHelpFormatter, | |
) | |
parser.add_argument( | |
"--list_models", | |
action="store_true", | |
help="list available pre-trained TTS and vocoder models.", | |
) | |
parser.add_argument( | |
"--model_info_by_idx", | |
type=str, | |
default=None, | |
help="model info using query format: <model_type>/<model_query_idx>", | |
) | |
parser.add_argument( | |
"--model_info_by_name", | |
type=str, | |
default=None, | |
help="model info using query format: <model_type>/<language>/<dataset>/<model_name>", | |
) | |
parser.add_argument("--text", type=str, default=None, help="Text to generate speech.") | |
# Args for running pre-trained TTS models. | |
parser.add_argument( | |
"--model_name", | |
type=str, | |
default="tts_models/en/ljspeech/tacotron2-DDC", | |
help="Name of one of the pre-trained TTS models in format <language>/<dataset>/<model_name>", | |
) | |
parser.add_argument( | |
"--vocoder_name", | |
type=str, | |
default=None, | |
help="Name of one of the pre-trained vocoder models in format <language>/<dataset>/<model_name>", | |
) | |
# Args for running custom models | |
parser.add_argument("--config_path", default=None, type=str, help="Path to model config file.") | |
parser.add_argument( | |
"--model_path", | |
type=str, | |
default=None, | |
help="Path to model file.", | |
) | |
parser.add_argument( | |
"--out_path", | |
type=str, | |
default="tts_output.wav", | |
help="Output wav file path.", | |
) | |
parser.add_argument("--use_cuda", action="store_true", help="Run model on CUDA.") | |
parser.add_argument("--device", type=str, help="Device to run model on.", default="cpu") | |
parser.add_argument( | |
"--vocoder_path", | |
type=str, | |
help="Path to vocoder model file. If it is not defined, model uses GL as vocoder. Please make sure that you installed vocoder library before (WaveRNN).", | |
default=None, | |
) | |
parser.add_argument("--vocoder_config_path", type=str, help="Path to vocoder model config file.", default=None) | |
parser.add_argument( | |
"--encoder_path", | |
type=str, | |
help="Path to speaker encoder model file.", | |
default=None, | |
) | |
parser.add_argument("--encoder_config_path", type=str, help="Path to speaker encoder config file.", default=None) | |
parser.add_argument( | |
"--pipe_out", | |
help="stdout the generated TTS wav file for shell pipe.", | |
action="store_true", | |
) | |
# args for multi-speaker synthesis | |
parser.add_argument("--speakers_file_path", type=str, help="JSON file for multi-speaker model.", default=None) | |
parser.add_argument("--language_ids_file_path", type=str, help="JSON file for multi-lingual model.", default=None) | |
parser.add_argument( | |
"--speaker_idx", | |
type=str, | |
help="Target speaker ID for a multi-speaker TTS model.", | |
default=None, | |
) | |
parser.add_argument( | |
"--language_idx", | |
type=str, | |
help="Target language ID for a multi-lingual TTS model.", | |
default=None, | |
) | |
parser.add_argument( | |
"--speaker_wav", | |
nargs="+", | |
help="wav file(s) to condition a multi-speaker TTS model with a Speaker Encoder. You can give multiple file paths. The d_vectors is computed as their average.", | |
default=None, | |
) | |
parser.add_argument("--gst_style", help="Wav path file for GST style reference.", default=None) | |
parser.add_argument( | |
"--capacitron_style_wav", type=str, help="Wav path file for Capacitron prosody reference.", default=None | |
) | |
parser.add_argument("--capacitron_style_text", type=str, help="Transcription of the reference.", default=None) | |
parser.add_argument( | |
"--list_speaker_idxs", | |
help="List available speaker ids for the defined multi-speaker model.", | |
action="store_true", | |
) | |
parser.add_argument( | |
"--list_language_idxs", | |
help="List available language ids for the defined multi-lingual model.", | |
action="store_true", | |
) | |
# aux args | |
parser.add_argument( | |
"--reference_wav", | |
type=str, | |
help="Reference wav file to convert in the voice of the speaker_idx or speaker_wav", | |
default=None, | |
) | |
parser.add_argument( | |
"--reference_speaker_idx", | |
type=str, | |
help="speaker ID of the reference_wav speaker (If not provided the embedding will be computed using the Speaker Encoder).", | |
default=None, | |
) | |
parser.add_argument( | |
"--progress_bar", | |
action=argparse.BooleanOptionalAction, | |
help="Show a progress bar for the model download.", | |
default=True, | |
) | |
# voice conversion args | |
parser.add_argument( | |
"--source_wav", | |
type=str, | |
default=None, | |
help="Original audio file to convert in the voice of the target_wav", | |
) | |
parser.add_argument( | |
"--target_wav", | |
type=str, | |
default=None, | |
help="Target audio file to convert in the voice of the source_wav", | |
) | |
parser.add_argument( | |
"--voice_dir", | |
type=str, | |
default=None, | |
help="Voice dir for tortoise model", | |
) | |
args = parser.parse_args(arg_list) | |
# print the description if either text or list_models is not set | |
check_args = [ | |
args.text, | |
args.list_models, | |
args.list_speaker_idxs, | |
args.list_language_idxs, | |
args.reference_wav, | |
args.model_info_by_idx, | |
args.model_info_by_name, | |
args.source_wav, | |
args.target_wav, | |
] | |
if not any(check_args): | |
parser.parse_args(["-h"]) | |
return args | |
def main(arg_list: Optional[list[str]] = None) -> None: | |
"""Entry point for `tts` command line interface.""" | |
args = parse_args(arg_list) | |
stream = sys.stderr if args.pipe_out else sys.stdout | |
setup_logger("TTS", level=logging.INFO, stream=stream, formatter=ConsoleFormatter()) | |
pipe_out = sys.stdout if args.pipe_out else None | |
with contextlib.redirect_stdout(None if args.pipe_out else sys.stdout): | |
# Late-import to make things load faster | |
from TTS.api import TTS | |
from TTS.utils.manage import ModelManager | |
# load model manager | |
manager = ModelManager(models_file=TTS.get_models_file_path(), progress_bar=args.progress_bar) | |
tts_path = None | |
tts_config_path = None | |
speakers_file_path = None | |
language_ids_file_path = None | |
vocoder_path = None | |
vocoder_config_path = None | |
encoder_path = None | |
encoder_config_path = None | |
vc_path = None | |
vc_config_path = None | |
model_dir = None | |
# 1) List pre-trained TTS models | |
if args.list_models: | |
manager.list_models() | |
sys.exit(0) | |
# 2) Info about pre-trained TTS models (without loading a model) | |
if args.model_info_by_idx: | |
model_query = args.model_info_by_idx | |
manager.model_info_by_idx(model_query) | |
sys.exit(0) | |
if args.model_info_by_name: | |
model_query_full_name = args.model_info_by_name | |
manager.model_info_by_full_name(model_query_full_name) | |
sys.exit(0) | |
# 3) Load a model for further info or TTS/VC | |
device = args.device | |
if args.use_cuda: | |
device = "cuda" | |
# A local model will take precedence if specified via modeL_path | |
model_name = args.model_name if args.model_path is None else None | |
api = TTS( | |
model_name=model_name, | |
model_path=args.model_path, | |
config_path=args.config_path, | |
vocoder_name=args.vocoder_name, | |
vocoder_path=args.vocoder_path, | |
vocoder_config_path=args.vocoder_config_path, | |
encoder_path=args.encoder_path, | |
encoder_config_path=args.encoder_config_path, | |
speakers_file_path=args.speakers_file_path, | |
language_ids_file_path=args.language_ids_file_path, | |
progress_bar=args.progress_bar, | |
).to(device) | |
# query speaker ids of a multi-speaker model. | |
if args.list_speaker_idxs: | |
if not api.is_multi_speaker: | |
logger.info("Model only has a single speaker.") | |
sys.exit(0) | |
logger.info( | |
"Available speaker ids: (Set --speaker_idx flag to one of these values to use the multi-speaker model." | |
) | |
logger.info(api.speakers) | |
sys.exit(0) | |
# query langauge ids of a multi-lingual model. | |
if args.list_language_idxs: | |
if not api.is_multi_lingual: | |
logger.info("Monolingual model.") | |
sys.exit(0) | |
logger.info( | |
"Available language ids: (Set --language_idx flag to one of these values to use the multi-lingual model." | |
) | |
logger.info(api.languages) | |
sys.exit(0) | |
# check the arguments against a multi-speaker model. | |
if api.is_multi_speaker and (not args.speaker_idx and not args.speaker_wav): | |
logger.error( | |
"Looks like you use a multi-speaker model. Define `--speaker_idx` to " | |
"select the target speaker. You can list the available speakers for this model by `--list_speaker_idxs`." | |
) | |
sys.exit(1) | |
# RUN THE SYNTHESIS | |
if args.text: | |
logger.info("Text: %s", args.text) | |
if args.text is not None: | |
api.tts_to_file( | |
text=args.text, | |
speaker=args.speaker_idx, | |
language=args.language_idx, | |
speaker_wav=args.speaker_wav, | |
pipe_out=pipe_out, | |
file_path=args.out_path, | |
reference_wav=args.reference_wav, | |
style_wav=args.capacitron_style_wav, | |
style_text=args.capacitron_style_text, | |
reference_speaker_name=args.reference_speaker_idx, | |
voice_dir=args.voice_dir, | |
) | |
logger.info("Saved TTS output to %s", args.out_path) | |
elif args.source_wav is not None and args.target_wav is not None: | |
api.voice_conversion_to_file( | |
source_wav=args.source_wav, | |
target_wav=args.target_wav, | |
file_path=args.out_path, | |
pipe_out=pipe_out, | |
) | |
logger.info("Saved VC output to %s", args.out_path) | |
sys.exit(0) | |
if __name__ == "__main__": | |
main() | |