Spaces:
Sleeping
Sleeping
| import math | |
| import torch | |
| from torch import nn | |
| from torch.nn import functional as F | |
| from TTS.tts.layers.generic.normalization import LayerNorm2 | |
| from TTS.tts.layers.vits.transforms import piecewise_rational_quadratic_transform | |
| class DilatedDepthSeparableConv(nn.Module): | |
| def __init__(self, channels, kernel_size, num_layers, dropout_p=0.0) -> torch.tensor: | |
| """Dilated Depth-wise Separable Convolution module. | |
| :: | |
| x |-> DDSConv(x) -> LayerNorm(x) -> GeLU(x) -> Conv1x1(x) -> LayerNorm(x) -> GeLU(x) -> + -> o | |
| |-------------------------------------------------------------------------------------^ | |
| Args: | |
| channels ([type]): [description] | |
| kernel_size ([type]): [description] | |
| num_layers ([type]): [description] | |
| dropout_p (float, optional): [description]. Defaults to 0.0. | |
| Returns: | |
| torch.tensor: Network output masked by the input sequence mask. | |
| """ | |
| super().__init__() | |
| self.num_layers = num_layers | |
| self.convs_sep = nn.ModuleList() | |
| self.convs_1x1 = nn.ModuleList() | |
| self.norms_1 = nn.ModuleList() | |
| self.norms_2 = nn.ModuleList() | |
| for i in range(num_layers): | |
| dilation = kernel_size**i | |
| padding = (kernel_size * dilation - dilation) // 2 | |
| self.convs_sep.append( | |
| nn.Conv1d(channels, channels, kernel_size, groups=channels, dilation=dilation, padding=padding) | |
| ) | |
| self.convs_1x1.append(nn.Conv1d(channels, channels, 1)) | |
| self.norms_1.append(LayerNorm2(channels)) | |
| self.norms_2.append(LayerNorm2(channels)) | |
| self.dropout = nn.Dropout(dropout_p) | |
| def forward(self, x, x_mask, g=None): | |
| """ | |
| Shapes: | |
| - x: :math:`[B, C, T]` | |
| - x_mask: :math:`[B, 1, T]` | |
| """ | |
| if g is not None: | |
| x = x + g | |
| for i in range(self.num_layers): | |
| y = self.convs_sep[i](x * x_mask) | |
| y = self.norms_1[i](y) | |
| y = F.gelu(y) | |
| y = self.convs_1x1[i](y) | |
| y = self.norms_2[i](y) | |
| y = F.gelu(y) | |
| y = self.dropout(y) | |
| x = x + y | |
| return x * x_mask | |
| class ElementwiseAffine(nn.Module): | |
| """Element-wise affine transform like no-population stats BatchNorm alternative. | |
| Args: | |
| channels (int): Number of input tensor channels. | |
| """ | |
| def __init__(self, channels): | |
| super().__init__() | |
| self.translation = nn.Parameter(torch.zeros(channels, 1)) | |
| self.log_scale = nn.Parameter(torch.zeros(channels, 1)) | |
| def forward(self, x, x_mask, reverse=False, **kwargs): # pylint: disable=unused-argument | |
| if not reverse: | |
| y = (x * torch.exp(self.log_scale) + self.translation) * x_mask | |
| logdet = torch.sum(self.log_scale * x_mask, [1, 2]) | |
| return y, logdet | |
| x = (x - self.translation) * torch.exp(-self.log_scale) * x_mask | |
| return x | |
| class ConvFlow(nn.Module): | |
| """Dilated depth separable convolutional based spline flow. | |
| Args: | |
| in_channels (int): Number of input tensor channels. | |
| hidden_channels (int): Number of in network channels. | |
| kernel_size (int): Convolutional kernel size. | |
| num_layers (int): Number of convolutional layers. | |
| num_bins (int, optional): Number of spline bins. Defaults to 10. | |
| tail_bound (float, optional): Tail bound for PRQT. Defaults to 5.0. | |
| """ | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| hidden_channels: int, | |
| kernel_size: int, | |
| num_layers: int, | |
| num_bins=10, | |
| tail_bound=5.0, | |
| ): | |
| super().__init__() | |
| self.num_bins = num_bins | |
| self.tail_bound = tail_bound | |
| self.hidden_channels = hidden_channels | |
| self.half_channels = in_channels // 2 | |
| self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1) | |
| self.convs = DilatedDepthSeparableConv(hidden_channels, kernel_size, num_layers, dropout_p=0.0) | |
| self.proj = nn.Conv1d(hidden_channels, self.half_channels * (num_bins * 3 - 1), 1) | |
| self.proj.weight.data.zero_() | |
| self.proj.bias.data.zero_() | |
| def forward(self, x, x_mask, g=None, reverse=False): | |
| x0, x1 = torch.split(x, [self.half_channels] * 2, 1) | |
| h = self.pre(x0) | |
| h = self.convs(h, x_mask, g=g) | |
| h = self.proj(h) * x_mask | |
| b, c, t = x0.shape | |
| h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?] | |
| unnormalized_widths = h[..., : self.num_bins] / math.sqrt(self.hidden_channels) | |
| unnormalized_heights = h[..., self.num_bins : 2 * self.num_bins] / math.sqrt(self.hidden_channels) | |
| unnormalized_derivatives = h[..., 2 * self.num_bins :] | |
| x1, logabsdet = piecewise_rational_quadratic_transform( | |
| x1, | |
| unnormalized_widths, | |
| unnormalized_heights, | |
| unnormalized_derivatives, | |
| inverse=reverse, | |
| tails="linear", | |
| tail_bound=self.tail_bound, | |
| ) | |
| x = torch.cat([x0, x1], 1) * x_mask | |
| logdet = torch.sum(logabsdet * x_mask, [1, 2]) | |
| if not reverse: | |
| return x, logdet | |
| return x | |
| class StochasticDurationPredictor(nn.Module): | |
| """Stochastic duration predictor with Spline Flows. | |
| It applies Variational Dequantization and Variational Data Augmentation. | |
| Paper: | |
| SDP: https://arxiv.org/pdf/2106.06103.pdf | |
| Spline Flow: https://arxiv.org/abs/1906.04032 | |
| :: | |
| ## Inference | |
| x -> TextCondEncoder() -> Flow() -> dr_hat | |
| noise ----------------------^ | |
| ## Training | |
| |---------------------| | |
| x -> TextCondEncoder() -> + -> PosteriorEncoder() -> split() -> z_u, z_v -> (d - z_u) -> concat() -> Flow() -> noise | |
| d -> DurCondEncoder() -> ^ | | |
| |------------------------------------------------------------------------------| | |
| Args: | |
| in_channels (int): Number of input tensor channels. | |
| hidden_channels (int): Number of hidden channels. | |
| kernel_size (int): Kernel size of convolutional layers. | |
| dropout_p (float): Dropout rate. | |
| num_flows (int, optional): Number of flow blocks. Defaults to 4. | |
| cond_channels (int, optional): Number of channels of conditioning tensor. Defaults to 0. | |
| """ | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| hidden_channels: int, | |
| kernel_size: int, | |
| dropout_p: float, | |
| num_flows=4, | |
| cond_channels=0, | |
| language_emb_dim=0, | |
| ): | |
| super().__init__() | |
| # add language embedding dim in the input | |
| if language_emb_dim: | |
| in_channels += language_emb_dim | |
| # condition encoder text | |
| self.pre = nn.Conv1d(in_channels, hidden_channels, 1) | |
| self.convs = DilatedDepthSeparableConv(hidden_channels, kernel_size, num_layers=3, dropout_p=dropout_p) | |
| self.proj = nn.Conv1d(hidden_channels, hidden_channels, 1) | |
| # posterior encoder | |
| self.flows = nn.ModuleList() | |
| self.flows.append(ElementwiseAffine(2)) | |
| self.flows += [ConvFlow(2, hidden_channels, kernel_size, num_layers=3) for _ in range(num_flows)] | |
| # condition encoder duration | |
| self.post_pre = nn.Conv1d(1, hidden_channels, 1) | |
| self.post_convs = DilatedDepthSeparableConv(hidden_channels, kernel_size, num_layers=3, dropout_p=dropout_p) | |
| self.post_proj = nn.Conv1d(hidden_channels, hidden_channels, 1) | |
| # flow layers | |
| self.post_flows = nn.ModuleList() | |
| self.post_flows.append(ElementwiseAffine(2)) | |
| self.post_flows += [ConvFlow(2, hidden_channels, kernel_size, num_layers=3) for _ in range(num_flows)] | |
| if cond_channels != 0 and cond_channels is not None: | |
| self.cond = nn.Conv1d(cond_channels, hidden_channels, 1) | |
| if language_emb_dim != 0 and language_emb_dim is not None: | |
| self.cond_lang = nn.Conv1d(language_emb_dim, hidden_channels, 1) | |
| def forward(self, x, x_mask, dr=None, g=None, lang_emb=None, reverse=False, noise_scale=1.0): | |
| """ | |
| Shapes: | |
| - x: :math:`[B, C, T]` | |
| - x_mask: :math:`[B, 1, T]` | |
| - dr: :math:`[B, 1, T]` | |
| - g: :math:`[B, C]` | |
| """ | |
| # condition encoder text | |
| x = self.pre(x) | |
| if g is not None: | |
| x = x + self.cond(g) | |
| if lang_emb is not None: | |
| x = x + self.cond_lang(lang_emb) | |
| x = self.convs(x, x_mask) | |
| x = self.proj(x) * x_mask | |
| if not reverse: | |
| flows = self.flows | |
| assert dr is not None | |
| # condition encoder duration | |
| h = self.post_pre(dr) | |
| h = self.post_convs(h, x_mask) | |
| h = self.post_proj(h) * x_mask | |
| noise = torch.randn(dr.size(0), 2, dr.size(2)).to(device=x.device, dtype=x.dtype) * x_mask | |
| z_q = noise | |
| # posterior encoder | |
| logdet_tot_q = 0.0 | |
| for idx, flow in enumerate(self.post_flows): | |
| z_q, logdet_q = flow(z_q, x_mask, g=(x + h)) | |
| logdet_tot_q = logdet_tot_q + logdet_q | |
| if idx > 0: | |
| z_q = torch.flip(z_q, [1]) | |
| z_u, z_v = torch.split(z_q, [1, 1], 1) | |
| u = torch.sigmoid(z_u) * x_mask | |
| z0 = (dr - u) * x_mask | |
| # posterior encoder - neg log likelihood | |
| logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2]) | |
| nll_posterior_encoder = ( | |
| torch.sum(-0.5 * (math.log(2 * math.pi) + (noise**2)) * x_mask, [1, 2]) - logdet_tot_q | |
| ) | |
| z0 = torch.log(torch.clamp_min(z0, 1e-5)) * x_mask | |
| logdet_tot = torch.sum(-z0, [1, 2]) | |
| z = torch.cat([z0, z_v], 1) | |
| # flow layers | |
| for idx, flow in enumerate(flows): | |
| z, logdet = flow(z, x_mask, g=x, reverse=reverse) | |
| logdet_tot = logdet_tot + logdet | |
| if idx > 0: | |
| z = torch.flip(z, [1]) | |
| # flow layers - neg log likelihood | |
| nll_flow_layers = torch.sum(0.5 * (math.log(2 * math.pi) + (z**2)) * x_mask, [1, 2]) - logdet_tot | |
| return nll_flow_layers + nll_posterior_encoder | |
| flows = list(reversed(self.flows)) | |
| flows = flows[:-2] + [flows[-1]] # remove a useless vflow | |
| z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale | |
| for flow in flows: | |
| z = torch.flip(z, [1]) | |
| z = flow(z, x_mask, g=x, reverse=reverse) | |
| z0, _ = torch.split(z, [1, 1], 1) | |
| logw = z0 | |
| return logw | |