Spaces:
Running
Running
# -*- coding: utf-8 -*- | |
import datetime | |
import importlib | |
import logging | |
import os | |
import re | |
from pathlib import Path | |
from typing import Any, Callable, Dict, Optional, TextIO, TypeVar, Union | |
import torch | |
from packaging.version import Version | |
from typing_extensions import TypeIs | |
logger = logging.getLogger(__name__) | |
_T = TypeVar("_T") | |
def exists(val: Union[_T, None]) -> TypeIs[_T]: | |
return val is not None | |
def default(val: Union[_T, None], d: Union[_T, Callable[[], _T]]) -> _T: | |
if exists(val): | |
return val | |
return d() if callable(d) else d | |
def to_camel(text): | |
text = text.capitalize() | |
text = re.sub(r"(?!^)_([a-zA-Z])", lambda m: m.group(1).upper(), text) | |
text = text.replace("Tts", "TTS") | |
text = text.replace("vc", "VC") | |
return text | |
def find_module(module_path: str, module_name: str) -> object: | |
module_name = module_name.lower() | |
module = importlib.import_module(module_path + "." + module_name) | |
class_name = to_camel(module_name) | |
return getattr(module, class_name) | |
def import_class(module_path: str) -> object: | |
"""Import a class from a module path. | |
Args: | |
module_path (str): The module path of the class. | |
Returns: | |
object: The imported class. | |
""" | |
class_name = module_path.split(".")[-1] | |
module_path = ".".join(module_path.split(".")[:-1]) | |
module = importlib.import_module(module_path) | |
return getattr(module, class_name) | |
def get_import_path(obj: object) -> str: | |
"""Get the import path of a class. | |
Args: | |
obj (object): The class object. | |
Returns: | |
str: The import path of the class. | |
""" | |
return ".".join([type(obj).__module__, type(obj).__name__]) | |
def format_aux_input(def_args: Dict, kwargs: Dict) -> Dict: | |
"""Format kwargs to hande auxilary inputs to models. | |
Args: | |
def_args (Dict): A dictionary of argument names and their default values if not defined in `kwargs`. | |
kwargs (Dict): A `dict` or `kwargs` that includes auxilary inputs to the model. | |
Returns: | |
Dict: arguments with formatted auxilary inputs. | |
""" | |
kwargs = kwargs.copy() | |
for name in def_args: | |
if name not in kwargs or kwargs[name] is None: | |
kwargs[name] = def_args[name] | |
return kwargs | |
def get_timestamp() -> str: | |
return datetime.datetime.now().strftime("%y%m%d-%H%M%S") | |
class ConsoleFormatter(logging.Formatter): | |
"""Custom formatter that prints logging.INFO messages without the level name. | |
Source: https://stackoverflow.com/a/62488520 | |
""" | |
def format(self, record): | |
if record.levelno == logging.INFO: | |
self._style._fmt = "%(message)s" | |
else: | |
self._style._fmt = "%(levelname)s: %(message)s" | |
return super().format(record) | |
def setup_logger( | |
logger_name: str, | |
level: int = logging.INFO, | |
*, | |
formatter: Optional[logging.Formatter] = None, | |
stream: Optional[TextIO] = None, | |
log_dir: Optional[Union[str, os.PathLike[Any]]] = None, | |
log_name: str = "log", | |
) -> None: | |
"""Set up a logger. | |
Args: | |
logger_name: Name of the logger to set up | |
level: Logging level | |
formatter: Formatter for the logger | |
stream: Add a StreamHandler for the given stream, e.g. sys.stderr or sys.stdout | |
log_dir: Folder to write the log file (no file created if None) | |
log_name: Prefix of the log file name | |
""" | |
lg = logging.getLogger(logger_name) | |
if formatter is None: | |
formatter = logging.Formatter( | |
"%(asctime)s.%(msecs)03d - %(levelname)-8s - %(name)s: %(message)s", datefmt="%y-%m-%d %H:%M:%S" | |
) | |
lg.setLevel(level) | |
if log_dir is not None: | |
Path(log_dir).mkdir(exist_ok=True, parents=True) | |
log_file = Path(log_dir) / f"{log_name}_{get_timestamp()}.log" | |
fh = logging.FileHandler(log_file, mode="w") | |
fh.setFormatter(formatter) | |
lg.addHandler(fh) | |
if stream is not None: | |
sh = logging.StreamHandler(stream) | |
sh.setFormatter(formatter) | |
lg.addHandler(sh) | |
def is_pytorch_at_least_2_4() -> bool: | |
"""Check if the installed Pytorch version is 2.4 or higher.""" | |
return Version(torch.__version__) >= Version("2.4") | |
def optional_to_str(x: Optional[Any]) -> str: | |
"""Convert input to string, using empty string if input is None.""" | |
return "" if x is None else str(x) | |