Spaces:
Running
Running
from typing import Optional | |
import numpy as np | |
import torch | |
from scipy.stats import betabinom | |
from torch.nn import functional as F | |
class StandardScaler: | |
"""StandardScaler for mean-scale normalization with the given mean and scale values.""" | |
def __init__(self, mean: np.ndarray = None, scale: np.ndarray = None) -> None: | |
self.mean_ = mean | |
self.scale_ = scale | |
def set_stats(self, mean, scale): | |
self.mean_ = mean | |
self.scale_ = scale | |
def reset_stats(self): | |
delattr(self, "mean_") | |
delattr(self, "scale_") | |
def transform(self, X): | |
X = np.asarray(X) | |
X -= self.mean_ | |
X /= self.scale_ | |
return X | |
def inverse_transform(self, X): | |
X = np.asarray(X) | |
X *= self.scale_ | |
X += self.mean_ | |
return X | |
# from https://gist.github.com/jihunchoi/f1434a77df9db1bb337417854b398df1 | |
def sequence_mask(sequence_length: torch.Tensor, max_len: Optional[int] = None) -> torch.Tensor: | |
"""Create a sequence mask for filtering padding in a sequence tensor. | |
Args: | |
sequence_length (torch.tensor): Sequence lengths. | |
max_len (int, Optional): Maximum sequence length. Defaults to None. | |
Shapes: | |
- mask: :math:`[B, T_max]` | |
""" | |
if max_len is None: | |
max_len = int(sequence_length.max()) | |
seq_range = torch.arange(max_len, dtype=sequence_length.dtype, device=sequence_length.device) | |
# B x T_max | |
return seq_range.unsqueeze(0) < sequence_length.unsqueeze(1) | |
def segment(x: torch.tensor, segment_indices: torch.tensor, segment_size=4, pad_short=False): | |
"""Segment each sample in a batch based on the provided segment indices | |
Args: | |
x (torch.tensor): Input tensor. | |
segment_indices (torch.tensor): Segment indices. | |
segment_size (int): Expected output segment size. | |
pad_short (bool): Pad the end of input tensor with zeros if shorter than the segment size. | |
""" | |
# pad the input tensor if it is shorter than the segment size | |
if pad_short and x.shape[-1] < segment_size: | |
x = torch.nn.functional.pad(x, (0, segment_size - x.size(2))) | |
segments = torch.zeros_like(x[:, :, :segment_size]) | |
for i in range(x.size(0)): | |
index_start = segment_indices[i] | |
index_end = index_start + segment_size | |
x_i = x[i] | |
if pad_short and index_end >= x.size(2): | |
# pad the sample if it is shorter than the segment size | |
x_i = torch.nn.functional.pad(x_i, (0, (index_end + 1) - x.size(2))) | |
segments[i] = x_i[:, index_start:index_end] | |
return segments | |
def rand_segments( | |
x: torch.tensor, x_lengths: torch.tensor = None, segment_size=4, let_short_samples=False, pad_short=False | |
): | |
"""Create random segments based on the input lengths. | |
Args: | |
x (torch.tensor): Input tensor. | |
x_lengths (torch.tensor): Input lengths. | |
segment_size (int): Expected output segment size. | |
let_short_samples (bool): Allow shorter samples than the segment size. | |
pad_short (bool): Pad the end of input tensor with zeros if shorter than the segment size. | |
Shapes: | |
- x: :math:`[B, C, T]` | |
- x_lengths: :math:`[B]` | |
""" | |
_x_lenghts = x_lengths.clone() | |
B, _, T = x.size() | |
if pad_short: | |
if T < segment_size: | |
x = torch.nn.functional.pad(x, (0, segment_size - T)) | |
T = segment_size | |
if _x_lenghts is None: | |
_x_lenghts = T | |
len_diff = _x_lenghts - segment_size | |
if let_short_samples: | |
_x_lenghts[len_diff < 0] = segment_size | |
len_diff = _x_lenghts - segment_size | |
else: | |
assert all( | |
len_diff > 0 | |
), f" [!] At least one sample is shorter than the segment size ({segment_size}). \n {_x_lenghts}" | |
segment_indices = (torch.rand([B]).type_as(x) * (len_diff + 1)).long() | |
ret = segment(x, segment_indices, segment_size, pad_short=pad_short) | |
return ret, segment_indices | |
def average_over_durations(values, durs): | |
"""Average values over durations. | |
Shapes: | |
- values: :math:`[B, 1, T_de]` | |
- durs: :math:`[B, T_en]` | |
- avg: :math:`[B, 1, T_en]` | |
""" | |
durs_cums_ends = torch.cumsum(durs, dim=1).long() | |
durs_cums_starts = torch.nn.functional.pad(durs_cums_ends[:, :-1], (1, 0)) | |
values_nonzero_cums = torch.nn.functional.pad(torch.cumsum(values != 0.0, dim=2), (1, 0)) | |
values_cums = torch.nn.functional.pad(torch.cumsum(values, dim=2), (1, 0)) | |
bs, l = durs_cums_ends.size() | |
n_formants = values.size(1) | |
dcs = durs_cums_starts[:, None, :].expand(bs, n_formants, l) | |
dce = durs_cums_ends[:, None, :].expand(bs, n_formants, l) | |
values_sums = (torch.gather(values_cums, 2, dce) - torch.gather(values_cums, 2, dcs)).float() | |
values_nelems = (torch.gather(values_nonzero_cums, 2, dce) - torch.gather(values_nonzero_cums, 2, dcs)).float() | |
avg = torch.where(values_nelems == 0.0, values_nelems, values_sums / values_nelems) | |
return avg | |
def convert_pad_shape(pad_shape: list[list]) -> list: | |
l = pad_shape[::-1] | |
return [item for sublist in l for item in sublist] | |
def generate_path(duration: torch.Tensor, mask: torch.Tensor) -> torch.Tensor: | |
"""Generate alignment path based on the given segment durations. | |
Shapes: | |
- duration: :math:`[B, T_en]` | |
- mask: :math:'[B, T_en, T_de]` | |
- path: :math:`[B, T_en, T_de]` | |
""" | |
b, t_x, t_y = mask.shape | |
cum_duration = torch.cumsum(duration, dim=1) | |
cum_duration_flat = cum_duration.view(b * t_x) | |
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype) | |
path = path.view(b, t_x, t_y) | |
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1] | |
return path * mask | |
def generate_attention( | |
duration: torch.Tensor, x_mask: torch.Tensor, y_mask: Optional[torch.Tensor] = None | |
) -> torch.Tensor: | |
"""Generate an attention map from the linear scale durations. | |
Args: | |
duration (Tensor): Linear scale durations. | |
x_mask (Tensor): Mask for the input (character) sequence. | |
y_mask (Tensor): Mask for the output (spectrogram) sequence. Compute it from the predicted durations | |
if None. Defaults to None. | |
Shapes | |
- duration: :math:`(B, T_{en})` | |
- x_mask: :math:`(B, T_{en})` | |
- y_mask: :math:`(B, T_{de})` | |
""" | |
# compute decode mask from the durations | |
if y_mask is None: | |
y_lengths = duration.sum(dim=1).long() | |
y_lengths[y_lengths < 1] = 1 | |
y_mask = sequence_mask(y_lengths).unsqueeze(1).to(duration.dtype) | |
attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2) | |
return generate_path(duration, attn_mask.squeeze(1)).to(duration.dtype) | |
def expand_encoder_outputs( | |
x: torch.Tensor, duration: torch.Tensor, x_mask: torch.Tensor, y_lengths: torch.Tensor | |
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
"""Generate attention alignment map from durations and expand encoder outputs. | |
Shapes: | |
- x: Encoder output :math:`(B, D_{en}, T_{en})` | |
- duration: :math:`(B, T_{en})` | |
- x_mask: :math:`(B, T_{en})` | |
- y_lengths: :math:`(B)` | |
Examples:: | |
encoder output: [a,b,c,d] | |
durations: [1, 3, 2, 1] | |
expanded: [a, b, b, b, c, c, d] | |
attention map: [[0, 0, 0, 0, 0, 0, 1], | |
[0, 0, 0, 0, 1, 1, 0], | |
[0, 1, 1, 1, 0, 0, 0], | |
[1, 0, 0, 0, 0, 0, 0]] | |
""" | |
y_mask = sequence_mask(y_lengths).unsqueeze(1).to(x.dtype) | |
attn = generate_attention(duration, x_mask, y_mask) | |
x_expanded = torch.einsum("kmn, kjm -> kjn", [attn.float(), x]) | |
return x_expanded, attn, y_mask | |
def beta_binomial_prior_distribution(phoneme_count, mel_count, scaling_factor=1.0): | |
P, M = phoneme_count, mel_count | |
x = np.arange(0, P) | |
mel_text_probs = [] | |
for i in range(1, M + 1): | |
a, b = scaling_factor * i, scaling_factor * (M + 1 - i) | |
rv = betabinom(P, a, b) | |
mel_i_prob = rv.pmf(x) | |
mel_text_probs.append(mel_i_prob) | |
return np.array(mel_text_probs) | |
def compute_attn_prior(x_len, y_len, scaling_factor=1.0): | |
"""Compute attention priors for the alignment network.""" | |
attn_prior = beta_binomial_prior_distribution( | |
x_len, | |
y_len, | |
scaling_factor, | |
) | |
return attn_prior # [y_len, x_len] | |