Spaces:
Running
Running
from dataclasses import dataclass, field | |
from typing import Optional | |
from coqpit import Coqpit | |
from TTS.vc.configs.shared_configs import BaseVCConfig | |
class OpenVoiceAudioConfig(Coqpit): | |
"""Audio configuration | |
Args: | |
input_sample_rate (int): | |
The sampling rate of the input waveform. | |
output_sample_rate (int): | |
The sampling rate of the output waveform. | |
fft_size (int): | |
The length of the filter. | |
hop_length (int): | |
The hop length. | |
win_length (int): | |
The window length. | |
""" | |
input_sample_rate: int = field(default=22050) | |
output_sample_rate: int = field(default=22050) | |
fft_size: int = field(default=1024) | |
hop_length: int = field(default=256) | |
win_length: int = field(default=1024) | |
class OpenVoiceArgs(Coqpit): | |
"""OpenVoice model arguments. | |
zero_g (bool): | |
Whether to zero the gradients. | |
inter_channels (int): | |
The number of channels in the intermediate layers. | |
hidden_channels (int): | |
The number of channels in the hidden layers. | |
filter_channels (int): | |
The number of channels in the filter layers. | |
n_heads (int): | |
The number of attention heads. | |
n_layers (int): | |
The number of layers. | |
kernel_size (int): | |
The size of the kernel. | |
p_dropout (float): | |
The dropout probability. | |
resblock (str): | |
The type of residual block. | |
resblock_kernel_sizes (List[int]): | |
The kernel sizes for the residual blocks. | |
resblock_dilation_sizes (List[List[int]]): | |
The dilation sizes for the residual blocks. | |
upsample_rates (List[int]): | |
The upsample rates. | |
upsample_initial_channel (int): | |
The number of channels in the initial upsample layer. | |
upsample_kernel_sizes (List[int]): | |
The kernel sizes for the upsample layers. | |
n_layers_q (int): | |
The number of layers in the quantization network. | |
use_spectral_norm (bool): | |
Whether to use spectral normalization. | |
gin_channels (int): | |
The number of channels in the global conditioning vector. | |
tau (float): | |
Tau parameter for the posterior encoder | |
""" | |
zero_g: bool = field(default=True) | |
inter_channels: int = field(default=192) | |
hidden_channels: int = field(default=192) | |
filter_channels: int = field(default=768) | |
n_heads: int = field(default=2) | |
n_layers: int = field(default=6) | |
kernel_size: int = field(default=3) | |
p_dropout: float = field(default=0.1) | |
resblock: str = field(default="1") | |
resblock_kernel_sizes: list[int] = field(default_factory=lambda: [3, 7, 11]) | |
resblock_dilation_sizes: list[list[int]] = field(default_factory=lambda: [[1, 3, 5], [1, 3, 5], [1, 3, 5]]) | |
upsample_rates: list[int] = field(default_factory=lambda: [8, 8, 2, 2]) | |
upsample_initial_channel: int = field(default=512) | |
upsample_kernel_sizes: list[int] = field(default_factory=lambda: [16, 16, 4, 4]) | |
n_layers_q: int = field(default=3) | |
use_spectral_norm: bool = field(default=False) | |
gin_channels: int = field(default=256) | |
tau: float = field(default=0.3) | |
class OpenVoiceConfig(BaseVCConfig): | |
"""Defines parameters for OpenVoice VC model. | |
Args: | |
model (str): | |
Model name. Do not change unless you know what you are doing. | |
model_args (OpenVoiceArgs): | |
Model architecture arguments. Defaults to `OpenVoiceArgs()`. | |
audio (OpenVoiceAudioConfig): | |
Audio processing configuration. Defaults to `OpenVoiceAudioConfig()`. | |
return_wav (bool): | |
If true, data loader returns the waveform as well as the other outputs. Do not change. Defaults to `True`. | |
compute_linear_spec (bool): | |
If true, the linear spectrogram is computed and returned alongside the mel output. Do not change. Defaults to `True`. | |
use_weighted_sampler (bool): | |
If true, use weighted sampler with bucketing for balancing samples between datasets used in training. Defaults to `False`. | |
weighted_sampler_attrs (dict): | |
Key retuned by the formatter to be used for weighted sampler. For example `{"root_path": 2.0, "speaker_name": 1.0}` sets sample probabilities | |
by overweighting `root_path` by 2.0. Defaults to `{}`. | |
weighted_sampler_multipliers (dict): | |
Weight each unique value of a key returned by the formatter for weighted sampling. | |
For example `{"root_path":{"/raid/datasets/libritts-clean-16khz-bwe-coqui_44khz/LibriTTS/train-clean-100/":1.0, "/raid/datasets/libritts-clean-16khz-bwe-coqui_44khz/LibriTTS/train-clean-360/": 0.5}`. | |
It will sample instances from `train-clean-100` 2 times more than `train-clean-360`. Defaults to `{}`. | |
r (int): | |
Number of spectrogram frames to be generated at a time. Do not change. Defaults to `1`. | |
add_blank (bool): | |
If true, a blank token is added in between every character. Defaults to `True`. | |
Note: | |
Check :class:`TTS.tts.configs.shared_configs.BaseVCConfig` for the inherited parameters. | |
Example: | |
>>> from TTS.vc.configs.openvoice_config import OpenVoiceConfig | |
>>> config = OpenVoiceConfig() | |
""" | |
model: str = "openvoice" | |
# model specific params | |
model_args: OpenVoiceArgs = field(default_factory=OpenVoiceArgs) | |
audio: OpenVoiceAudioConfig = field(default_factory=OpenVoiceAudioConfig) | |
# optimizer | |
# TODO with training support | |
# loss params | |
# TODO with training support | |
# data loader params | |
return_wav: bool = True | |
compute_linear_spec: bool = True | |
# sampler params | |
use_weighted_sampler: bool = False # TODO: move it to the base config | |
weighted_sampler_attrs: dict = field(default_factory=lambda: {}) | |
weighted_sampler_multipliers: dict = field(default_factory=lambda: {}) | |
# overrides | |
r: int = 1 # DO NOT CHANGE | |
add_blank: bool = True | |
# multi-speaker settings | |
# use speaker embedding layer | |
num_speakers: int = 0 | |
speakers_file: Optional[str] = None | |
speaker_embedding_channels: int = 256 | |
# use d-vectors | |
use_d_vector_file: bool = False | |
d_vector_file: Optional[list[str]] = None | |
d_vector_dim: Optional[int] = None | |
def __post_init__(self) -> None: | |
for key, val in self.model_args.items(): | |
if hasattr(self, key): | |
self[key] = val | |