Spaces:
Running
Running
| import glob | |
| import os | |
| import random | |
| from multiprocessing import Manager | |
| import numpy as np | |
| import torch | |
| from torch.utils.data import Dataset | |
| class GANDataset(Dataset): | |
| """ | |
| GAN Dataset searchs for all the wav files under root path | |
| and converts them to acoustic features on the fly and returns | |
| random segments of (audio, feature) couples. | |
| """ | |
| def __init__( | |
| self, | |
| ap, | |
| items, | |
| seq_len, | |
| hop_len, | |
| pad_short, | |
| conv_pad=2, | |
| return_pairs=False, | |
| is_training=True, | |
| return_segments=True, | |
| use_noise_augment=False, | |
| use_cache=False, | |
| ): | |
| super().__init__() | |
| self.ap = ap | |
| self.item_list = items | |
| self.compute_feat = not isinstance(items[0], (tuple, list)) | |
| self.seq_len = seq_len | |
| self.hop_len = hop_len | |
| self.pad_short = pad_short | |
| self.conv_pad = conv_pad | |
| self.return_pairs = return_pairs | |
| self.is_training = is_training | |
| self.return_segments = return_segments | |
| self.use_cache = use_cache | |
| self.use_noise_augment = use_noise_augment | |
| assert seq_len % hop_len == 0, " [!] seq_len has to be a multiple of hop_len." | |
| self.feat_frame_len = seq_len // hop_len + (2 * conv_pad) | |
| # map G and D instances | |
| self.G_to_D_mappings = list(range(len(self.item_list))) | |
| self.shuffle_mapping() | |
| # cache acoustic features | |
| if use_cache: | |
| self.create_feature_cache() | |
| def create_feature_cache(self): | |
| self.manager = Manager() | |
| self.cache = self.manager.list() | |
| self.cache += [None for _ in range(len(self.item_list))] | |
| def find_wav_files(path): | |
| return glob.glob(os.path.join(path, "**", "*.wav"), recursive=True) | |
| def __len__(self): | |
| return len(self.item_list) | |
| def __getitem__(self, idx): | |
| """Return different items for Generator and Discriminator and | |
| cache acoustic features""" | |
| # set the seed differently for each worker | |
| if torch.utils.data.get_worker_info(): | |
| random.seed(torch.utils.data.get_worker_info().seed) | |
| if self.return_segments: | |
| item1 = self.load_item(idx) | |
| if self.return_pairs: | |
| idx2 = self.G_to_D_mappings[idx] | |
| item2 = self.load_item(idx2) | |
| return item1, item2 | |
| return item1 | |
| item1 = self.load_item(idx) | |
| return item1 | |
| def _pad_short_samples(self, audio, mel=None): | |
| """Pad samples shorter than the output sequence length""" | |
| if len(audio) < self.seq_len: | |
| audio = np.pad(audio, (0, self.seq_len - len(audio)), mode="constant", constant_values=0.0) | |
| if mel is not None and mel.shape[1] < self.feat_frame_len: | |
| pad_value = self.ap.melspectrogram(np.zeros([self.ap.win_length]))[:, 0] | |
| mel = np.pad( | |
| mel, | |
| ([0, 0], [0, self.feat_frame_len - mel.shape[1]]), | |
| mode="constant", | |
| constant_values=pad_value.mean(), | |
| ) | |
| return audio, mel | |
| def shuffle_mapping(self): | |
| random.shuffle(self.G_to_D_mappings) | |
| def load_item(self, idx): | |
| """load (audio, feat) couple""" | |
| if self.compute_feat: | |
| # compute features from wav | |
| wavpath = self.item_list[idx] | |
| if self.use_cache and self.cache[idx] is not None: | |
| audio, mel = self.cache[idx] | |
| else: | |
| audio = self.ap.load_wav(wavpath) | |
| mel = self.ap.melspectrogram(audio) | |
| audio, mel = self._pad_short_samples(audio, mel) | |
| else: | |
| # load precomputed features | |
| wavpath, feat_path = self.item_list[idx] | |
| if self.use_cache and self.cache[idx] is not None: | |
| audio, mel = self.cache[idx] | |
| else: | |
| audio = self.ap.load_wav(wavpath) | |
| mel = np.load(feat_path) | |
| audio, mel = self._pad_short_samples(audio, mel) | |
| # correct the audio length wrt padding applied in stft | |
| audio = np.pad(audio, (0, self.hop_len), mode="edge") | |
| audio = audio[: mel.shape[-1] * self.hop_len] | |
| assert ( | |
| mel.shape[-1] * self.hop_len == audio.shape[-1] | |
| ), f" [!] {mel.shape[-1] * self.hop_len} vs {audio.shape[-1]}" | |
| audio = torch.from_numpy(audio).float().unsqueeze(0) | |
| mel = torch.from_numpy(mel).float().squeeze(0) | |
| if self.return_segments: | |
| max_mel_start = mel.shape[1] - self.feat_frame_len | |
| mel_start = random.randint(0, max_mel_start) | |
| mel_end = mel_start + self.feat_frame_len | |
| mel = mel[:, mel_start:mel_end] | |
| audio_start = mel_start * self.hop_len | |
| audio = audio[:, audio_start : audio_start + self.seq_len] | |
| if self.use_noise_augment and self.is_training and self.return_segments: | |
| audio = audio + (1 / 32768) * torch.randn_like(audio) | |
| return (mel, audio) | |