Spaces:
Running
Running
import logging | |
import torch | |
import torch.utils.data | |
from librosa.filters import mel as librosa_mel_fn | |
from TTS.utils.audio.torch_transforms import amp_to_db | |
logger = logging.getLogger(__name__) | |
MAX_WAV_VALUE = 32768.0 | |
mel_basis = {} | |
hann_window = {} | |
def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False): | |
if torch.min(y) < -1.0: | |
logger.info("Min value is: %.3f", torch.min(y)) | |
if torch.max(y) > 1.0: | |
logger.info("Max value is: %.3f", torch.max(y)) | |
global mel_basis, hann_window | |
dtype_device = str(y.dtype) + "_" + str(y.device) | |
fmax_dtype_device = str(fmax) + "_" + dtype_device | |
wnsize_dtype_device = str(win_size) + "_" + dtype_device | |
if fmax_dtype_device not in mel_basis: | |
mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax) | |
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device) | |
if wnsize_dtype_device not in hann_window: | |
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device) | |
y = torch.nn.functional.pad( | |
y.unsqueeze(1), (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)), mode="reflect" | |
) | |
y = y.squeeze(1) | |
spec = torch.view_as_real( | |
torch.stft( | |
y, | |
n_fft, | |
hop_length=hop_size, | |
win_length=win_size, | |
window=hann_window[wnsize_dtype_device], | |
center=center, | |
pad_mode="reflect", | |
normalized=False, | |
onesided=True, | |
return_complex=True, | |
) | |
) | |
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6) | |
spec = torch.matmul(mel_basis[fmax_dtype_device], spec) | |
spec = amp_to_db(spec) | |
return spec | |