File size: 12,433 Bytes
76b1ec5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import os

import torch

from accelerate import Accelerator
from datetime import datetime
from transformers import get_scheduler

from aux import SameLineLogger, log
from data import DataState, BatchingIterator
from modelops import save_all_models, report_devices


def chain_params(coupling_specs):
    for spec in coupling_specs:
        yield from spec.model.parameters()


class TrainLossList:
    def __init__(self):
        self.data = []

    def append(self, loss_val, sub_batch_idx, epoch_batch_idx, _epoch_idx):
        self.data.append((loss_val, sub_batch_idx, epoch_batch_idx, _epoch_idx))

    def state_dict(self):
        return {'data': self.data}

    def load_state_dict(self, state_dict):
        self.data = state_dict['data']


class SwitchingAccelerator:
    def __init__(self, train_set, train_kwargs, model, tokenizer, preinit_acc=None):
        self.kwargs = train_kwargs
        self.train_set_iter = BatchingIterator(train_set, self.kwargs.batch_size, tokenizer, train_kwargs.max_length)

        self.model = model
        self.tokenizer = tokenizer

        self.train_loss_list = TrainLossList()
        self.data_state = DataState(epoch_idx=0)

        self._init_acc_and_stuff(preinit_acc)

        self._init_time_keepers()

    def _init_time_keepers(self):
        if self.kwargs.log_steps < 0 and self.accelerator.is_main_process:
            t = datetime.now()
            self._tk_zero = t - t

            self._tk_stats = {}
            self._tk_time = {}

    def _add_timekeeper(self, msg):
        if self.kwargs.log_steps < 0 and self.accelerator.is_main_process:
            self._tk_stats[msg] = []
            self._tk_time[msg] = None

    def _add_timekeepers(self, msgs):
        for msg in msgs:
            self._add_timekeeper(msg)

    def _tk_start(self, msg):
        if self.kwargs.log_steps < 0 and self.accelerator.is_main_process:
            assert self._tk_time[msg] is None

            self._tk_time[msg] = datetime.now()

    def _tk_stop(self, msg):
        if self.kwargs.log_steps < 0 and self.accelerator.is_main_process:
            assert self._tk_time[msg] is not None

            this_time = datetime.now() - self._tk_time[msg]
            self._tk_time[msg] = None
            self._tk_stats[msg].append(this_time)

            log(f"{msg} took {this_time}, avg time: " +
                f" {sum(self._tk_stats[msg], self._tk_zero) / len(self._tk_stats[msg])}" +
                f" over {len(self._tk_stats[msg])} samples")

    def __handle_accum(self):

        assert self.kwargs.batch_size % (self.accelerator.num_processes * self.kwargs.nr_sents_per_gpu) == 0,\
            "batch size must be divisible by number of processes and number of segments per GPU"

        accum_steps = int((self.kwargs.batch_size / self.accelerator.num_processes) / self.kwargs.nr_sents_per_gpu)
        self.accelerator.gradient_accumulation_steps = accum_steps

        log(f"Nr sents/GPU: {self.kwargs.nr_sents_per_gpu}, accum steps: {accum_steps}, " +
            f"nr. procs: {self.accelerator.num_processes}, batch size: {self.kwargs.batch_size}",
            accelerator=self.accelerator)

    def ___get_train_scalars(self):
        epoch_len = len(self.train_set_iter)
        train_len = epoch_len * self.kwargs.epochs

        num_warmup = 0 #int(train_len * 0.01)

        log(f"Warmup steps: {num_warmup}, epoch len: {epoch_len}, train len: {train_len}", accelerator=self.accelerator)

        return train_len, num_warmup

    def __init_opt_lr_and_what_else(self):
        train_len, num_warmup = self.___get_train_scalars()

        opt = torch.optim.AdamW(self.model.parameters(), lr=self.kwargs.lr)

        numtr = train_len * self.accelerator.num_processes
        lr_scheduler = get_scheduler("linear", optimizer=opt, num_warmup_steps=num_warmup, num_training_steps=numtr)

        self.optimizer, self.lr_scheduler, self.model = self.accelerator.prepare(opt, lr_scheduler, self.model)

        self.accelerator.register_for_checkpointing(self.data_state, self.train_loss_list)

    def _init_acc_and_stuff(self, preinit_acc=None):
        #self.accelerator = Accelerator(gradient_accumulation_steps=self.kwargs.accum_steps, kwargs_handlers=[DistributedDataParallelKwargs(find_unused_parameters=True)])

        if preinit_acc is None:
            self.accelerator = Accelerator()
        else:
            self.accelerator = preinit_acc

        self.__handle_accum()

        self.__init_opt_lr_and_what_else()

        if self.kwargs.continue_training:
            self.accelerator.load_state(self.kwargs.mdl_id)
            log(f"Reloaded data state: {self.data_state}", accelerator=self.accelerator)

    def train(self, dry_run=False):
        try:
            self._main_loop(dry_run)
        except Exception as e:
            #in multiprocess scenarios it is hard to read the stack trace, so just show one:
            if self.accelerator.is_main_process:
                raise e

        self.accelerator.wait_for_everyone()

        unwr_coupled_model = self.accelerator.unwrap_model(self.model)

        return unwr_coupled_model

    def _prepare_inputs(self, batch, sub_batch_idx, sub_batch_size, proc_batch_size):
        from_proc_idx = proc_batch_size * self.accelerator.process_index + sub_batch_size * sub_batch_idx
        to_proc_idx = from_proc_idx + sub_batch_size

        #log(f"----> DEBUG for sub_b idx {sub_batch_idx}, proc {self.accelerator.process_index}: {from_proc_idx}:{to_proc_idx}")

        return {k: batch[k][from_proc_idx:to_proc_idx].to(self.accelerator.device) for k in batch}

    def _get_split_batch_params(self):
        batch_nr_snts = self.kwargs.batch_size

        assert batch_nr_snts % self.accelerator.num_processes == 0, "Batch size must be divisible by number of processes."

        proc_batch_nr_snts = batch_nr_snts // self.accelerator.num_processes

        sub_batch_size = self.kwargs.nr_sents_per_gpu

        nr_steps = -(proc_batch_nr_snts // -sub_batch_size)

        #log(f"--> DEBUG: sub_batch {sub_batch_size} X steps {nr_steps} ~ {proc_batch_nr_snts} ({batch_nr_snts} / {self.accelerator.num_processes})", accelerator=self.accelerator)
        return sub_batch_size, nr_steps, proc_batch_nr_snts

    def _report_mem_every_once_in_a_while(self, sub_batch_idx, epoch_batch_idx, batch_dim):
        if sub_batch_idx == 0:
            report_devices(f"training memory usage (batch size: {self.kwargs.batch_size} / {batch_dim[1]}",
                           self.accelerator, self.model)

    def _main_loop(self, dry_run):
        if self.accelerator.is_main_process:
            logger = SameLineLogger(len(self.train_set_iter), self.kwargs.epochs, self.data_state)
            logger.line_start()
        else:
            logger = None

        self.model.train()
        self.train_set_iter.thats_where(self.data_state)

        tks = "full_batch", "prep_inputs", "forward", "backward", "upd_step"
        tk_batch, tk_prep, tk_fw, tk_bk, tk_step = tks
        self._add_timekeepers(tks)

        with self.accelerator.accumulate(self.model):
            for _epoch_idx in range(self.data_state.epoch_idx, self.kwargs.epochs):
                for batch, epoch_batch_idx in self.train_set_iter:
                    if dry_run:
                        log(f"Dry run, batch width: {batch['input_ids'].size()}")
                    else:
                        self._report_mem_every_once_in_a_while(0, epoch_batch_idx, batch['input_ids'].size())
                        sub_batch_size, nr_steps, proc_batch_size = self._get_split_batch_params()

                        self._tk_start(tk_batch)

                        loss = None
                        for sub_batch_idx in range(nr_steps):
                            self._tk_start(tk_prep) ########
                            inputs = self._prepare_inputs(batch, sub_batch_idx, sub_batch_size, proc_batch_size)

                            inputs['labels'] = inputs['input_ids'].copy()
                            self._tk_stop(tk_prep) ########

                            self._tk_start(tk_fw) ########
                            outputs = self.model(**inputs)

                            loss = outputs.loss
                            self._tk_stop(tk_fw) ########

                            self.train_loss_list.append(loss.item(), sub_batch_idx, epoch_batch_idx, _epoch_idx)

                            self._tk_start(tk_bk) ########
                            self.accelerator.backward(loss)
                            self._tk_stop(tk_bk) ########

                            self._tk_start(tk_step) ########
                            self.optimizer.step()
                            self.lr_scheduler.step()
                            self.optimizer.zero_grad()
                            self._tk_stop(tk_step) ########

                        self._tk_stop(tk_batch)

                        #assert self.accelerator.sync_gradients, "It is not time to sync gradients yet."
                        self._step_and_perhaps_save(logger, epoch_batch_idx, _epoch_idx, float(loss.item()))

        if self.accelerator.is_main_process:
            logger.line_break()

    def get_total_grad(self):
        result = 0
        grad_count = 0
        all_count = 0

        for p in self.model.parameters():
            if p.grad is not None:
                result += p.grad.abs().mean().item()
                grad_count += 1
            all_count += 1

        return result/grad_count if grad_count != 0 else -1

    def _step_and_perhaps_save(self, logger, epoch_batch_idx, epoch_i, loss):
        epoch_len = len(self.train_set_iter)
        global_batch_idx = epoch_batch_idx + epoch_i * epoch_len

        is_end_of_epoch = (epoch_batch_idx == epoch_len)

        if self.accelerator.is_main_process \
                and (epoch_batch_idx % self.kwargs.log_steps == 0 or is_end_of_epoch):
            grad = self.get_total_grad()

            logger.step(global_batch_idx, epoch_batch_idx, epoch_i, loss, self.lr_scheduler.get_last_lr()[0], grad)

        #self.optimizer.zero_grad()

        if (global_batch_idx % self.kwargs.save_steps == 0) or is_end_of_epoch:
            self.accelerator.wait_for_everyone()

            if self.accelerator.is_main_process:
                logger.line_break()
                log(f"Saving at {epoch_batch_idx} steps, epoch {epoch_i + 1} ({global_batch_idx} global steps)", accelerator=self.accelerator)

                self._save_all(global_batch_idx, epoch_i)

                logger.line_start()

    def _save_all(self, global_batch_idx, epoch_i):
        epoch_len = len(self.train_set_iter)

        ckpt_name = (f"checkpoint-e{epoch_i + 1:02}-" +
                     (f"b{global_batch_idx:07}" if (global_batch_idx % epoch_len) else f"full"))

        this_location = os.path.join(self.kwargs.save_location, ckpt_name)
        if os.path.exists(this_location):
            raise FileExistsError(f"Cannot overwrite existing checkpoint {this_location}!")

        self.data_state.copy_from(self.train_set_iter.where_are_we(), epoch_idx=epoch_i)

        model_to_save = self.accelerator.unwrap_model(self.model)

        save_all_models(this_location, model_to_save, self.tokenizer, trainer=self.accelerator)

def test_this_damn_thing():
    # testing
    import torch
    import json
    from torch.optim import AdamW
    from modelops import hf_tok
    from transformers import AutoModelForCausalLM, AutoTokenizer

    mdl_id = "models/llama3.2-1b"

    tokenizer = AutoTokenizer.from_pretrained(mdl_id, token=hf_tok)
    model = AutoModelForCausalLM.from_pretrained(mdl_id, token=hf_tok, torch_dtype=torch.bfloat16)
    with open("tmpx.json", "r") as f:
        training_data_raw = json.load(f)

    optimizer = AdamW(model.parameters(), lr=5e-6)

    print("Initial 0:", optimizer.param_groups[0]['lr'])  # Should be [5e-6]

    scheduler = get_scheduler(
        "linear",
        optimizer=optimizer,
        num_warmup_steps=0,
        num_training_steps=2445
    )

    accel = Accelerator()

    p_optimizer, p_lr_scheduler, p_model = accel.prepare(optimizer, scheduler, model)

    print("Initial 1:", p_lr_scheduler.get_last_lr())  # Should be [5e-6]

    """
    for _ in range(2):
        optimizer.step()
        scheduler.step()
        print("Step:", scheduler.get_last_lr())
    """


if __name__ == "__main__":
    test_this_damn_thing()