File size: 9,507 Bytes
76b1ec5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
"""
import os

import torch

from accelerate import Accelerator, DistributedDataParallelKwargs
from transformers import get_scheduler

from aux import SameLineLogger, log
from data import DataState
from langconv import is_dec_only_llm
from modelops import save_all_models, report_devices
from translate import encode


raise NotImplementedError("This is a backup package, do not run or import from it")


def chain_params(coupling_specs):
    for spec in coupling_specs:
        yield from spec.model.parameters()


class TrainLossList:
    def __init__(self):
        self.data = []

    def append(self, loss_val, src_k, tgt_k):
        self.data.append((loss_val, src_k, tgt_k))

    def state_dict(self):
        return {'data': self.data}

    def load_state_dict(self, state_dict):
        self.data = state_dict['data']



class SwitchingAccelerator:
    def __init__(self, coupling_specs, train_set, train_kwargs):
        self.coupling_specs = coupling_specs

        self.train_set = train_set
        self.kwargs = train_kwargs

        self.is_generative = is_dec_only_llm(self.coupling_specs[0].tokenizer)

        self.train_loss_list = TrainLossList()
        self.data_state = DataState(epoch_idx=0)

        self._init_acc_and_stuff()

    def _init_acc_and_stuff(self):
        #self.accelerator = Accelerator(gradient_accumulation_steps=self.kwargs.accum_steps, kwargs_handlers=[DistributedDataParallelKwargs(find_unused_parameters=True)])
        #self.accelerator = Accelerator(gradient_accumulation_steps=self.kwargs.accum_steps)
        self.accelerator = Accelerator()

        epoch_len = len(self.train_set)
        train_len = epoch_len * self.kwargs.epochs

        num_warmup = int(train_len * 0.01)

        log(f"Warmup steps: {num_warmup}, epoch len: {epoch_len}, train len: {train_len}", accelerator=self.accelerator)

        opt = torch.optim.AdamW(chain_params(self.coupling_specs), lr=self.kwargs.lr)
        lr_scheduler = get_scheduler("linear", optimizer=opt, num_warmup_steps=num_warmup,
                                     num_training_steps=train_len * self.accelerator.num_processes)
        models = [s.model for s in self.coupling_specs]

        self.optimizer, self.lr_scheduler, *self.models = self.accelerator.prepare(opt, lr_scheduler, *models)

        self.accelerator.register_for_checkpointing(self.lr_scheduler, self.data_state, self.train_loss_list)

        if self.kwargs.continue_training:
            self.accelerator.load_state(self.kwargs.mdl_id)
            log(f"Reloaded data state: {self.data_state}", accelerator=self.accelerator)

    def train(self):
        try:
            self._main_loop()
        except Exception as e:
            #in multi-process scenarios it is hard to read the stack trace, so just show one:
            if self.accelerator.is_main_process:
                raise e

        self.accelerator.wait_for_everyone()

        unwr_coupled_model = self.accelerator.unwrap_model(self.models[0])

        return unwr_coupled_model, self.train_loss_list

    def _split_batch_and_bin_idxs(self, batch_with_idxs):
        if self.is_generative:
            batch, _ = batch_with_idxs
            src_k = 0
            tgt_k = 0
        else:
            batch, src_k, tgt_k, _ = batch_with_idxs
        return batch, src_k, tgt_k

    def _prepare_inputs(self, batch, sub_batch_idx, sub_batch_size, proc_batch_size):
        from_proc_idx = proc_batch_size * self.accelerator.process_index + sub_batch_size * sub_batch_idx
        to_proc_idx = from_proc_idx + sub_batch_size

        #log(f"----> DEBUG for sub_b idx {sub_batch_idx}, proc {self.accelerator.process_index}: {from_proc_idx}:{to_proc_idx}")

        return {k: batch[k][from_proc_idx:to_proc_idx].to(self.accelerator.device) for k in batch}

    def _get_split_batch_params(self, batch):
        batch_nr_snts = batch['input_ids'].size()[0]
        snt_nr_words = batch['input_ids'].size()[1]

        assert batch_nr_snts % self.accelerator.num_processes == 0, "Batch size must be divisible by number of processes."

        proc_batch_nr_snts = batch_nr_snts // self.accelerator.num_processes

        if self.kwargs.nr_snts_in_batch > 0:
            sub_batch_size = self.kwargs.nr_snts_in_batch
        else:
            sub_batch_size = max(1, self.kwargs.nr_words_in_batch // snt_nr_words)
        #log(f"DEBUG: #words/snt {snt_nr_words} X #snt in sub batch {sub_batch_size} = {snt_nr_words*sub_batch_size} ~ {self.kwargs.nr_words_in_batch}", accelerator=self.accelerator)

        nr_steps = -(proc_batch_nr_snts // -sub_batch_size)

        #log(f"--> DEBUG: sub_batch {sub_batch_size} X steps {nr_steps} ~ {proc_batch_nr_snts} ({batch_nr_snts} / {self.accelerator.num_processes})", accelerator=self.accelerator)
        return sub_batch_size, nr_steps, proc_batch_nr_snts

    def _main_loop(self):
        #countdown_till_do_it_once = 0

        if self.accelerator.is_main_process:
            logger = SameLineLogger(len(self.train_set), self.kwargs.epochs)
            logger.line_start()
        else:
            logger = None

        self.models[0].train()
        self.train_set.thats_where(self.data_state)

        for _epoch_idx in range(self.data_state.epoch_idx, self.kwargs.epochs):
            for batch_with_bin_idxs, epoch_batch_idx in self.train_set:
                batch, src_k, tgt_k = self._split_batch_and_bin_idxs(batch_with_bin_idxs)
                sub_batch_size, nr_steps, proc_batch_size = self._get_split_batch_params(batch)

                loss = None

                for sub_batch_idx in range(nr_steps):
                    inputs = self._prepare_inputs(batch, sub_batch_idx, sub_batch_size, proc_batch_size)

                    if self.is_generative:
                        inputs['labels'] = inputs['input_ids']
                        outputs = self.models[0](**inputs)
                    else:
                        encoder_vecs = encode(self.models[src_k], inputs)
                        outputs = self.models[tgt_k](attention_mask=inputs['attention_mask'], labels=inputs['labels'], encoder_outputs=encoder_vecs)

                    loss = outputs.loss

                    #if countdown_till_do_it_once > 0:
                    #    countdown_till_do_it_once -= 1
                    #elif countdown_till_do_it_once == 0:
                    if sub_batch_idx == 5:
                        batch_size = sum([inputs[k].size()[0] * inputs[k].size()[1] for k in 'input_ids labels attention_mask'.split(' ')])
                        report_devices(f"training memory usage (batch size: {batch_size}; inputs:" +
                                       f"snts {inputs['input_ids'].size()[0]} X words {inputs['input_ids'].size()[1]})",
                                       self.accelerator, self.models[0])
                        countdown_till_do_it_once = 0

                    self.train_loss_list.append(loss.item(), src_k, tgt_k)

                    self.accelerator.backward(loss)

                    for k in inputs:
                        inputs[k] = inputs[k].to('cpu')

                self._step_and_perhaps_save(logger, epoch_batch_idx, _epoch_idx, float(loss.item()))

        if self.accelerator.is_main_process:
            logger.line_break()

    def get_total_grad(self):
        result = 0
        grad_count = 0
        all_count = 0

        for p in self.models[0].parameters():
            if p.grad is not None:
                result += p.grad.abs().mean().item()
                grad_count += 1
            all_count += 1

        return result/grad_count if grad_count > 0 else -1

    def _step_and_perhaps_save(self, logger, epoch_batch_idx, epoch_i, loss):
        epoch_len = len(self.train_set)
        global_batch_idx = epoch_batch_idx + epoch_i * epoch_len

        self.optimizer.step()
        self.lr_scheduler.step()
        self.accelerator.wait_for_everyone()

        is_end_of_epoch = (epoch_batch_idx == epoch_len)

        if self.accelerator.is_main_process and (epoch_batch_idx % self.kwargs.log_steps == 0 or is_end_of_epoch):
            grad = self.get_total_grad()
            logger.step(global_batch_idx, epoch_batch_idx, epoch_i, loss, self.lr_scheduler.get_last_lr()[0], grad)

        self.optimizer.zero_grad()

        if (global_batch_idx % self.kwargs.save_steps == 0) or is_end_of_epoch:
            self.accelerator.wait_for_everyone()

            if self.accelerator.is_main_process:
                logger.line_break()
                log(f"Saving at {epoch_batch_idx} steps, epoch {epoch_i + 1} ({global_batch_idx} global steps)", accelerator=self.accelerator)

                self._save_all(global_batch_idx, epoch_i)

                logger.line_start()

    def _save_all(self, global_batch_idx, epoch_i):
        epoch_len = len(self.train_set)

        ckpt_name = (f"checkpoint-e{epoch_i + 1:02}-" +
                     (f"b{global_batch_idx:07}" if (global_batch_idx % epoch_len) else f"full"))

        this_location = os.path.join(self.kwargs.save_location, ckpt_name)
        if os.path.exists(this_location):
            raise FileExistsError(f"Cannot overwrite existing checkpoint {this_location}!")

        self.data_state.copy_from(self.train_set.where_are_we(), epoch_idx=epoch_i)

        model_to_save = self.accelerator.unwrap_model(self.models[0])

        save_all_models(this_location, model_to_save, self.coupling_specs[0].tokenizer,
                        self.coupling_specs, trainer=self.accelerator)
"""