File size: 8,768 Bytes
76b1ec5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
#!/usr/bin/env python3

from .promptops import PF_SMUGRI_MT
from .aux import log, CmdlineArgs
from .data import load_training_data

import json
import os, socket, torch

from datetime import datetime

from accelerate import Accelerator
from transformers import (
    AutoTokenizer,
    AutoModelForCausalLM,
    TrainingArguments,
    Trainer,
    DataCollatorForLanguageModeling,
    logging,
    TrainerCallback
)

"""
1/3 This simply reads in command-line arguments 
"""

def _cmdline_args():
    description = """Train or tune decoder models"""

    result = CmdlineArgs(description,
                         pos_arg_list=["mdl_id", "save_location", "train_file"],
                         pos_arg_types=[str, str, str],
                         kw_arg_dict={ "continue_training": False, "save_steps": 100, "lr": 1.5e-5,
                            "batch_size": 1024, "nr_sents_per_gpu": 4, "log_steps": 1, "epochs": 4,
                            "max_length": 2000, "prompt_format": PF_SMUGRI_MT,
                            "deepspeed": "none"})

    # if the directory args.save_location already exists, raise an exception:
    if not result.continue_training and os.path.exists(result.save_location):
        raise Exception(f"Save location '{result.save_location}' already exists, don't want to overwrite.")

    if result.nr_sents_per_gpu == 0:
        result.nr_sents_per_gpu = result.batch_size

    if result.deepspeed == "none":
        result.deepspeed = None

    return result

"""
2/3 This here is used in training in order to report timing and predictions 
"""

class StepTimerCallback(TrainerCallback):
    def __init__(self):
        self._step_start = None
        self.lengths = []
        self.abs_start = datetime.now()

        self.actual_first_step = None

        self.zero = self.abs_start - self.abs_start

    def on_step_begin(self, args, state, control, **kwargs):
        # called right before each training step
        self._step_start = datetime.now()

    def on_step_end(self, args, state, control, **kwargs):
        if self.actual_first_step is None:
            self.actual_first_step = state.global_step - 1

        # called right after each training step
        now = datetime.now()
        elapsed = now - self._step_start
        tot_elapsed = now - self.abs_start
        self.lengths.append(elapsed)

        avg = sum(self.lengths, start=self.zero) / len(self.lengths)

        remaining = state.max_steps - self.actual_first_step - state.global_step
        prediction = (tot_elapsed/(state.global_step - self.actual_first_step)) * remaining

        # you can use logging.get_logger(...) instead of print
        print(f"[step {state.global_step}/{state.max_steps}] took {elapsed}, avg {avg}; approx {prediction} remaining")

"""
3/3 Finally, the filling of TrainingArguments and the launching of Trainer:
"""

def get_training_args(cmdline_args, acc):
    world_size = acc.num_processes

    assert cmdline_args.batch_size % (cmdline_args.nr_sents_per_gpu * world_size) == 0, \
        "Batch size must be divisible by the number of GPUs and nr of sents per GPU"

    accum_steps = cmdline_args.batch_size // (cmdline_args.nr_sents_per_gpu * world_size)

    log(f"Nr of processes (GPUs): {world_size}, per-device batch: {cmdline_args.nr_sents_per_gpu}, accum. steps: {accum_steps}")

    if cmdline_args.deepspeed is not None:
        with open(cmdline_args.deepspeed, "r") as f:
            dpspd = json.load(f)

            #correct the dictionary with current values, so that we wouldn't need to update the JSON every time
            dpspd['train_batch_size'] = cmdline_args.batch_size
            dpspd['train_micro_batch_size_per_gpu'] = cmdline_args.nr_sents_per_gpu
            dpspd['gradient_accumulation_steps'] = accum_steps

            log(f"Using deepspeed with config {dpspd}")
    else:
        dpspd = None

    tr_args = TrainingArguments(
        output_dir=cmdline_args.save_location,
        per_device_train_batch_size=cmdline_args.nr_sents_per_gpu,
        gradient_accumulation_steps=accum_steps,
        num_train_epochs=cmdline_args.epochs,
        save_steps=cmdline_args.save_steps,
        save_total_limit=10,
        logging_steps=cmdline_args.log_steps,
        deepspeed=dpspd,
        learning_rate=cmdline_args.lr,
        save_strategy="epoch",
        disable_tqdm=True,
        report_to="none",
        # Optional but often helpful on LUMI/ROCm if you enable it in your args:
        bf16=True,
        ddp_find_unused_parameters=False,
        #dataloader_num_workers=1,
        #group_by_length=True,
        log_level="debug",
        #gradient_checkpointing=True,
        #dataloader_persistent_workers=True
    )

    return tr_args


def load_model(mdl_id, device, accelerator=None, attention="flash_attention_2"):
    log(f"Load model", accelerator=accelerator)
    model = AutoModelForCausalLM.from_pretrained(mdl_id,
                                                 low_cpu_mem_usage=False,
                                                 torch_dtype=torch.bfloat16,
                                                 attn_implementation=attention)

    model.config.use_cache = False
    model = model.to(device)
    log(f"Model loaded on device: {model.device}.", accelerator=accelerator)

    return model


def load_tokenizer(mdl_id, accelerator=None):
    log(f"Load tokenizer", accelerator=accelerator)
    tokenizer = AutoTokenizer.from_pretrained(mdl_id)

    # LLaMA 3.x: no pad token by default
    if tokenizer.pad_token is None:
        tokenizer.pad_token = "<|reserved_special_token_100|>"

    return tokenizer


def simple_train():
    cmd_args = _cmdline_args()
    acc = Accelerator()
    device = acc.device # it seems that the accelerator loses/changes this info later

    training_args = get_training_args(cmd_args, acc)

    tokenizer = load_tokenizer(cmd_args.mdl_id, acc)
    model = load_model(cmd_args.mdl_id, device, acc)

    if getattr(model.config, "pad_token_id", None) is None:
        model.config.pad_token_id = tokenizer.pad_token_id

    log(f"Load data", accelerator=acc)
    tokenized_train_data = load_training_data(cmd_args.train_file, tokenizer, cmd_args)

    data_collator = DataCollatorForLanguageModeling(
        tokenizer=tokenizer,
        mlm=False,
        pad_to_multiple_of=8,  # GPT says this helps performance
    )

    log(f"Preparing to train", accelerator=acc)

    clbks = [StepTimerCallback] if acc.is_main_process else []

    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=tokenized_train_data,
        tokenizer=tokenizer,
        data_collator=data_collator,
        callbacks=clbks,
    )

    logging.set_verbosity_debug()

    log(f"Starting training", accelerator=acc)
    trainer.train(resume_from_checkpoint=cmd_args.continue_training)

    log(f"Done, saving model", accelerator=acc)
    trainer.save_model()


def env_stuff():
    os.environ.setdefault("LOCAL_RANK", os.environ.get("SLURM_LOCALID", "---"))
    os.environ.setdefault("RANK", os.environ.get("SLURM_PROCID", "0"))
    os.environ.setdefault("WORLD_SIZE", os.environ.get("SLURM_NTASKS", "1"))
    os.environ.setdefault("MASTER_ADDR", os.environ.get("SLURM_LAUNCH_NODE_IPADDR", "127.0.0.1"))
    os.environ.setdefault("MASTER_PORT", "29500")  # pick an open port

    # Optional: make sure each process selects its own GPU
    torch.cuda.set_device(int(os.environ["LOCAL_RANK"]))

    try:
        log(
            f"host={socket.gethostname()} "
            f"RANK={os.environ['RANK']}/{os.environ['WORLD_SIZE']} "
            f"LOCAL_RANK={os.environ['LOCAL_RANK']} "
            f"HIP_VISIBLE_DEVICES={os.environ.get('HIP_VISIBLE_DEVICES')} "
            f"ROCR_VISIBLE_DEVICES={os.environ.get('ROCR_VISIBLE_DEVICES')} "
            f"cuda_count={torch.cuda.device_count()} curr_dev={torch.cuda.current_device()}"
        )
    except AssertionError:
        log(
            f"host={socket.gethostname()} "
            f"RANK={os.environ['RANK']}/{os.environ['WORLD_SIZE']} "
            f"LOCAL_RANK={os.environ['LOCAL_RANK']} "
            f"HIP_VISIBLE_DEVICES={os.environ.get('HIP_VISIBLE_DEVICES')} "
            f"ROCR_VISIBLE_DEVICES={os.environ.get('ROCR_VISIBLE_DEVICES')} "
            f"no cuda"
        )

"""
This replaces the trainer, in order to
print out the final batch when training,
and commit harakiri. So only for temporary
debugging-related usage
"""
class LoggingKillingTrainer(Trainer):
    def compute_loss(self, model, inputs, **kwargs):
        log(f"Here is the batch for training: {inputs}")
        raise NotImplementedError
        #return super().compute_loss(model, inputs, **kwargs)

if __name__ == "__main__":
    env_stuff()

    simple_train()