#!/usr/bin/env python3 from .promptops import * import json import sys from random import shuffle from torch.utils.data import Dataset as TorchDataset, DataLoader from .aux import log def tokenize_str(tokenizer, entry, add_eos=True, max_len=3000, for_inf=False): if for_inf: tokens = tokenizer( entry, truncation=True, max_length=max_len, return_attention_mask=True, return_tensors="pt" ) else: tokens = tokenizer( entry, truncation=True, max_length=max_len, return_attention_mask=True ) if add_eos: tokens['attention_mask'].append(1) tokens['input_ids'].append(tokenizer.eos_token_id) return tokens """ Load texts into memory and allow to loop through it, returning tokenized tensors. Currently no support for text data that does not fit into memory, need to add it. Or do HF datasets have something out of the box? """ class LazyTokenizingDataset(TorchDataset): def __init__(self, texts, tokenizer, max_length=512, prompt_format="raw"): self.texts = texts self.tokenizer = tokenizer self.max_length = max_length self.prompt_format = prompt_format def __len__(self): return len(self.texts) def __getitem__(self, idx): # Return plain Python lists; let the collator pad & build labels. entry = self.texts[idx] prompt = prep_prompt(entry, self.prompt_format) return tokenize_str(self.tokenizer, prompt) class LazyTokenizingInferenceDataset(TorchDataset): def __init__(self, texts, tokenizer, prompt_format, max_length=512, debug=False): self.texts = texts self.tokenizer = tokenizer self.max_length = max_length self.prompt_format = prompt_format self.debug = debug def __len__(self): return len(self.texts) def __getitem__(self, idx): entry = self.texts[idx] prompt = prep_prompt(entry, self.prompt_format, inference=True) result = tokenize_str(self.tokenizer, prompt, add_eos=False, for_inf=True) if self.debug: log(f"Input: {prompt}") log(f"Tokenized: {result}") return result def read_input(path, formt): if path is None: log("Reading from STDIN") fh = sys.stdin else: fh = open(path, 'r') if formt == PF_RAW: result = [fh.read()] elif formt == PF_RAWLINES: result = fh.readlines() else: result = json.load(fh) return result def get_data_loader(path, prompt_format, tokenizer, debug=False): inputs = read_input(path, prompt_format) dataset = LazyTokenizingInferenceDataset(inputs, tokenizer, prompt_format, debug=debug) """ data_coll = DataCollatorForLanguageModeling( tokenizer=tokenizer, mlm=False, pad_to_multiple_of=None, # helps performance; set None if you prefer exact lengths ) data_loader = DataLoader(dataset, collate_fn=data_coll, batch_size=1) """ return dataset def load_training_data(path, tokenizer, cmd_args): with open(path, "r") as f: data = json.load(f) train_set_iter = LazyTokenizingDataset(data, tokenizer, cmd_args.max_length, cmd_args.prompt_format) return train_set_iter if __name__ == '__main__': all_data = [] for input_file in sys.argv[1:]: with open(input_file, "r") as f: this_data = json.load(f) all_data += this_data shuffle(all_data) json.dump(all_data, sys.stdout)