Spaces:
Running
Running
Update main.py
Browse files
main.py
CHANGED
@@ -1,76 +1,79 @@
|
|
1 |
-
import random
|
2 |
-
import requests
|
3 |
-
from flask import Flask, request, Response, stream_with_context, render_template_string
|
4 |
-
|
5 |
-
app = Flask(__name__)
|
6 |
-
|
7 |
-
@app.route('/', methods=['GET'])
|
8 |
-
def index():
|
9 |
-
template = '''
|
10 |
-
<html>
|
11 |
-
<head>
|
12 |
-
<title>Huggingface Chat API Adapter</title>
|
13 |
-
</head>
|
14 |
-
<body>
|
15 |
-
<h1>Huggingface Chat API Adapter</h1>
|
16 |
-
|
17 |
-
[Introduction]<br>
|
18 |
-
When using Huggingface's Serverless Inference API for a conversation, by default 100 new tokens are output and a cache is used.<br>
|
19 |
-
This API changes these two default settings, and other parameters are consistent with the official API.<br>
|
20 |
-
<br>
|
21 |
-
[How to use]<br>
|
22 |
-
1. <a target="_blank" href="https://huggingface.co/settings/tokens/new">Create a token</a> with the "Make calls to the serverless Inference API" permission as an API key.<br>
|
23 |
-
2. Set the Base URL of the OpenAI compatible client to "https://tastypear-sia-chat-adapter.hf.space/api".<br>
|
24 |
-
3. Use the full name of the model (e.g. mistralai/Mistral-Nemo-Instruct-2407)<br>
|
25 |
-
<br>
|
26 |
-
[Supported models]<br>
|
27 |
-
Most of the available models can be found <a target="_blank" href="https://huggingface.co/models?inference=warm&other=text-generation-inference">HERE</a>.<br>
|
28 |
-
Some "cold" models may also be supported (e.g. meta-llama/Meta-Llama-3.1-405B-Instruct), please test it yourself.<br>
|
29 |
-
Some models require a token created by a PRO user to use.<br>
|
30 |
-
<br>
|
31 |
-
[Avoid reaching the call limit]<br>
|
32 |
-
If you have multiple tokens, you can connect them with a semicolon (";") and the API will use a random one (e.g. "hf_aaaa;hf_bbbb;hf_...")<br>
|
33 |
-
</body>
|
34 |
-
</html>
|
35 |
-
'''
|
36 |
-
return render_template_string(template)
|
37 |
-
|
38 |
-
@app.route('/api/v1/chat/completions', methods=['POST'])
|
39 |
-
def proxy():
|
40 |
-
headers = dict(request.headers)
|
41 |
-
headers.pop('Host', None)
|
42 |
-
headers.pop('Content-Length', None)
|
43 |
-
keys = request.headers['Authorization'].split(' ')[1].split(';')
|
44 |
-
headers['Authorization'] = f'Bearer {random.choice(keys)}'
|
45 |
-
headers['X-Use-Cache'] = 'false'
|
46 |
-
|
47 |
-
json_data = request.get_json()
|
48 |
-
model = json_data['model']
|
49 |
-
chat_api = f"https://api-inference.huggingface.co/models/{model}/v1/chat/completions"
|
50 |
-
|
51 |
-
# Try to use the largest ctx
|
52 |
-
if not 'max_tokens' in json_data:
|
53 |
-
json_data['max_tokens'] = 2**32-1
|
54 |
-
json_data['json_mode'] = True
|
55 |
-
info = requests.post(chat_api, json=request.json, headers=headers, stream=False).text
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import requests
|
3 |
+
from flask import Flask, request, Response, stream_with_context, render_template_string
|
4 |
+
|
5 |
+
app = Flask(__name__)
|
6 |
+
|
7 |
+
@app.route('/', methods=['GET'])
|
8 |
+
def index():
|
9 |
+
template = '''
|
10 |
+
<html>
|
11 |
+
<head>
|
12 |
+
<title>Huggingface Chat API Adapter</title>
|
13 |
+
</head>
|
14 |
+
<body>
|
15 |
+
<h1>Huggingface Chat API Adapter</h1>
|
16 |
+
|
17 |
+
[Introduction]<br>
|
18 |
+
When using Huggingface's Serverless Inference API for a conversation, by default 100 new tokens are output and a cache is used.<br>
|
19 |
+
This API changes these two default settings, and other parameters are consistent with the official API.<br>
|
20 |
+
<br>
|
21 |
+
[How to use]<br>
|
22 |
+
1. <a target="_blank" href="https://huggingface.co/settings/tokens/new">Create a token</a> with the "Make calls to the serverless Inference API" permission as an API key.<br>
|
23 |
+
2. Set the Base URL of the OpenAI compatible client to "https://tastypear-sia-chat-adapter.hf.space/api".<br>
|
24 |
+
3. Use the full name of the model (e.g. mistralai/Mistral-Nemo-Instruct-2407)<br>
|
25 |
+
<br>
|
26 |
+
[Supported models]<br>
|
27 |
+
Most of the available models can be found <a target="_blank" href="https://huggingface.co/models?inference=warm&other=text-generation-inference">HERE</a>.<br>
|
28 |
+
Some "cold" models may also be supported (e.g. meta-llama/Meta-Llama-3.1-405B-Instruct), please test it yourself.<br>
|
29 |
+
Some models require a token created by a PRO user to use.<br>
|
30 |
+
<br>
|
31 |
+
[Avoid reaching the call limit]<br>
|
32 |
+
If you have multiple tokens, you can connect them with a semicolon (";") and the API will use a random one (e.g. "hf_aaaa;hf_bbbb;hf_...")<br>
|
33 |
+
</body>
|
34 |
+
</html>
|
35 |
+
'''
|
36 |
+
return render_template_string(template)
|
37 |
+
|
38 |
+
@app.route('/api/v1/chat/completions', methods=['POST'])
|
39 |
+
def proxy():
|
40 |
+
headers = dict(request.headers)
|
41 |
+
headers.pop('Host', None)
|
42 |
+
headers.pop('Content-Length', None)
|
43 |
+
keys = request.headers['Authorization'].split(' ')[1].split(';')
|
44 |
+
headers['Authorization'] = f'Bearer {random.choice(keys)}'
|
45 |
+
headers['X-Use-Cache'] = 'false'
|
46 |
+
|
47 |
+
json_data = request.get_json()
|
48 |
+
model = json_data['model']
|
49 |
+
chat_api = f"https://api-inference.huggingface.co/models/{model}/v1/chat/completions"
|
50 |
+
|
51 |
+
# Try to use the largest ctx
|
52 |
+
if not 'max_tokens' in json_data:
|
53 |
+
json_data['max_tokens'] = 2**32-1
|
54 |
+
json_data['json_mode'] = True
|
55 |
+
info = requests.post(chat_api, json=request.json, headers=headers, stream=False).text
|
56 |
+
json_data['json_mode'] = False
|
57 |
+
try:
|
58 |
+
max_ctx = int(info.split("<= ")[1].split(".")[0])
|
59 |
+
inputs = int(info.split("Given: ")[1].split("`")[0])
|
60 |
+
json_data['max_tokens'] = max_ctx - inputs - 1
|
61 |
+
except Exception e:
|
62 |
+
print(e)
|
63 |
+
|
64 |
+
if not 'seed' in json_data:
|
65 |
+
json_data['seed'] = random.randint(1,2**32)
|
66 |
+
|
67 |
+
def generate():
|
68 |
+
with requests.post(chat_api, json=request.json, headers=headers, stream=True) as resp:
|
69 |
+
for chunk in resp.iter_content(chunk_size=1024):
|
70 |
+
if chunk:
|
71 |
+
yield chunk
|
72 |
+
|
73 |
+
return Response(stream_with_context(generate()), content_type='text/event-stream')
|
74 |
+
|
75 |
+
#import gevent.pywsgi
|
76 |
+
#from gevent import monkey;monkey.patch_all()
|
77 |
+
if __name__ == "__main__":
|
78 |
+
app.run(debug=True)
|
79 |
+
# gevent.pywsgi.WSGIServer((args.host, args.port), app).serve_forever()
|