File size: 31,328 Bytes
e284167
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
"""
Evaluator objects for different evaluation types.
"""

import logging
import random
from abc import ABC, abstractmethod
import heapq
from collections import defaultdict
import pytrec_eval
import numpy as np
import sklearn.cluster
import torch
from scipy.stats import pearsonr
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import (
    accuracy_score,
    average_precision_score,
    classification_report,
    f1_score,
    precision_score,
    recall_score,
    label_ranking_average_precision_score,
)
from sklearn.metrics.cluster import v_measure_score
from sklearn.metrics.pairwise import (
    paired_cosine_distances,
    paired_euclidean_distances,
    paired_manhattan_distances,
)
from sklearn.multioutput import MultiOutputRegressor
from sklearn.preprocessing import MultiLabelBinarizer
from typing import Dict, List, Tuple

from .eval_utils import (
    cos_sim,
    dot_score,
    mrr,
    recall_cap,
    hole,
    confidence_scores,
    nAUC,
    top_k_accuracy,
)


class Evaluator(ABC):
    """Base class for all evaluators
    Extend this class and implement __call__ for custom evaluators.
    """

    def __init__(self, seed=42, **kwargs):
        self.seed = seed
        random.seed(self.seed)
        np.random.seed(self.seed)
        torch.manual_seed(self.seed)
        torch.cuda.manual_seed_all(self.seed)

    @abstractmethod
    def __call__(self, model):
        """This is called during training to evaluate the model.
        It returns scores.

        Parameters
        ----------
        model:
            the model to evaluate
        """
        pass


logger = logging.getLogger(__name__)


class logRegClassificationEvaluator(Evaluator):
    def __init__(
        self,
        embeds_train,
        y_train,
        embeds_test,
        y_test,
        max_iter=1000,
        **kwargs,
    ):
        super().__init__(**kwargs)
        self.embeds_train = embeds_train
        self.y_train = y_train
        self.embeds_test = embeds_test
        self.y_test = y_test

        self.max_iter = max_iter

    def __call__(self):
        scores = {}
        clf = LogisticRegression(
            random_state=self.seed,
            n_jobs=-1,
            max_iter=self.max_iter,
            verbose=1 if logger.isEnabledFor(logging.DEBUG) else 0,
        )
        logger.info(f"Encoding {len(self.embeds_train)} training embeds...")
        X_train = np.asarray(self.embeds_train)

        logger.info(f"Encoding {len(self.embeds_test)} test embeds...")
        X_test = np.asarray(self.embeds_test)
        logger.info("Fitting logistic regression classifier...")
        clf.fit(X_train, self.y_train)
        logger.info("Evaluating...")
        y_pred = clf.predict(X_test)
        accuracy = accuracy_score(self.y_test, y_pred)
        f1 = f1_score(self.y_test, y_pred, average="macro")
        scores["accuracy"] = accuracy
        scores["f1"] = f1

        # if binary classification
        if len(np.unique(self.y_train)) == 2:
            ap = average_precision_score(self.y_test, y_pred)
            scores["ap"] = ap

        return scores


class ClusteringEvaluator(Evaluator):
    def __init__(
        self,
        embeds,
        labels,
        clustering_batch_size=500,
        **kwargs,
    ):
        super().__init__(**kwargs)
        self.embeds = embeds
        self.labels = labels
        self.clustering_batch_size = clustering_batch_size

    def __call__(self):
        logger.info(f"Encoding {len(self.embeds)} embeds...")
        corpus_embeddings = np.asarray(self.embeds)

        logger.info("Fitting Mini-Batch K-Means model...")
        clustering_model = sklearn.cluster.MiniBatchKMeans(
            n_clusters=len(set(self.labels)),
            batch_size=self.clustering_batch_size,
            n_init="auto",
        )
        clustering_model.fit(corpus_embeddings)
        cluster_assignment = clustering_model.labels_

        logger.info("Evaluating...")
        v_measure = v_measure_score(self.labels, cluster_assignment)

        return {"v_measure": v_measure}


class PairClassificationEvaluator(Evaluator):
    """Evaluate a model based on the similarity of the embeddings by calculating the accuracy of identifying similar and
    dissimilar embeds.
    The metrics are the cosine similarity as well as euclidean and Manhattan distance
    The returned score is the accuracy with a specified metric.
    The results are written in a CSV. If a CSV already exists, then values are appended.
    The labels need to be 0 for dissimilar pairs and 1 for similar pairs.
    :param embeds1: The first column of embeds
    :param embeds2: The second column of embeds
    :param labels: labels[i] is the label for the pair (embeds1[i], embeds2[i]). Must be 0 or 1
    :param name: Name for the output
    :param write_csv: Write results to a CSV file
    """

    def __init__(self, embeds1, embeds2, labels, **kwargs):
        super().__init__(**kwargs)
        self.embeds1 = embeds1
        self.embeds2 = embeds2
        self.labels = labels

        assert len(self.embeds1) == len(self.embeds2)
        assert len(self.embeds1) == len(self.labels)
        for label in labels:
            assert label == 0 or label == 1

    def __call__(self):
        scores = self.compute_metrics()
        # Compute the max of Average Precision (AP) over all distance metrics.
        top_ap_score = max(score for k, score in scores.items() if k.endswith("_ap"))
        scores["top_ap"] = top_ap_score
        return scores

    def compute_metrics(self):
        embeddings1 = np.array(self.embeds1)
        embeddings2 = np.array(self.embeds2)

        logger.info("Computing similarity distances...")
        cosine_scores = 1 - paired_cosine_distances(embeddings1, embeddings2)
        manhattan_distances = paired_manhattan_distances(embeddings1, embeddings2)
        euclidean_distances = paired_euclidean_distances(embeddings1, embeddings2)

        embeddings1_np = np.asarray(embeddings1)
        embeddings2_np = np.asarray(embeddings2)
        dot_scores = [
            np.dot(embeddings1_np[i], embeddings2_np[i])
            for i in range(len(embeddings1_np))
        ]

        logger.info("Computing metrics...")
        labels = np.asarray(self.labels)
        output_scores = {}
        for short_name, name, scores, reverse in [
            ["cos_sim", "Cosine-Similarity", cosine_scores, True],
            ["manhattan", "Manhattan-Distance", manhattan_distances, False],
            ["euclidean", "Euclidean-Distance", euclidean_distances, False],
            ["dot", "Dot-Product", dot_scores, True],
        ]:
            metrics = self._compute_metrics(scores, labels, reverse)
            metrics = {short_name + "_" + k: v for k, v in metrics.items()}
            output_scores.update(metrics)

        return output_scores

    @staticmethod
    def _compute_metrics(scores, labels, high_score_more_similar):
        """Compute the metrics for the given scores and labels.

        Args:
            scores (`np.ndarray` of shape (n_pairs, )): The similarity/dissimilarity scores for the pairs.
            labels (`np.ndarray` of shape (n_pairs, )): The labels for the pairs.
            high_score_more_similar (`bool`): If true, then the higher the score, the more similar the pairs are.

        Returns:
            `dict`: The metrics for the given scores and labels.
        """
        acc, acc_threshold = PairClassificationEvaluator.find_best_acc_and_threshold(
            scores, labels, high_score_more_similar
        )
        f1, precision, recall, f1_threshold = (
            PairClassificationEvaluator.find_best_f1_and_threshold(
                scores, labels, high_score_more_similar
            )
        )
        ap = PairClassificationEvaluator.ap_score(
            scores, labels, high_score_more_similar
        )

        return {
            "accuracy": acc,
            "accuracy_threshold": acc_threshold,
            "f1": f1,
            "f1_threshold": f1_threshold,
            "precision": precision,
            "recall": recall,
            "ap": ap,
        }

    @staticmethod
    def find_best_acc_and_threshold(scores, labels, high_score_more_similar: bool):
        assert len(scores) == len(labels)
        rows = list(zip(scores, labels))

        rows = sorted(rows, key=lambda x: x[0], reverse=high_score_more_similar)

        max_acc = 0
        best_threshold = -1

        positive_so_far = 0
        remaining_negatives = sum(np.array(labels) == 0)

        for i in range(len(rows) - 1):
            score, label = rows[i]
            if label == 1:
                positive_so_far += 1
            else:
                remaining_negatives -= 1

            acc = (positive_so_far + remaining_negatives) / len(labels)
            if acc > max_acc:
                max_acc = acc
                best_threshold = (rows[i][0] + rows[i + 1][0]) / 2

        return max_acc, best_threshold

    @staticmethod
    def find_best_f1_and_threshold(scores, labels, high_score_more_similar: bool):
        assert len(scores) == len(labels)

        scores = np.asarray(scores)
        labels = np.asarray(labels)

        rows = list(zip(scores, labels))

        rows = sorted(rows, key=lambda x: x[0], reverse=high_score_more_similar)

        best_f1 = best_precision = best_recall = 0
        threshold = 0
        nextract = 0
        ncorrect = 0
        total_num_duplicates = sum(labels)

        for i in range(len(rows) - 1):
            score, label = rows[i]
            nextract += 1

            if label == 1:
                ncorrect += 1

            if ncorrect > 0:
                precision = ncorrect / nextract
                recall = ncorrect / total_num_duplicates
                f1 = 2 * precision * recall / (precision + recall)
                if f1 > best_f1:
                    best_f1 = f1
                    best_precision = precision
                    best_recall = recall
                    threshold = (rows[i][0] + rows[i + 1][0]) / 2

        return best_f1, best_precision, best_recall, threshold

    @staticmethod
    def ap_score(scores, labels, high_score_more_similar: bool):
        return average_precision_score(
            labels, scores * (1 if high_score_more_similar else -1)
        )


class MultiClassMultiOutputLogRegClassificationEvaluator(Evaluator):
    def __init__(
        self,
        embeds_train,
        y_train,
        embeds_test,
        y_test,
        max_iter=1000,
        **kwargs,
    ):
        super().__init__(**kwargs)
        self.embeds_train = embeds_train
        self.y_train = y_train
        self.embeds_test = embeds_test
        self.y_test = y_test
        self.max_iter = max_iter

    def __call__(self):
        scores = {}
        mlb = MultiLabelBinarizer()
        # all classes in y_train and y_test

        class_labels = list(self.y_train) + list(self.y_test)
        labels = [class_label.split(", ") for class_label in class_labels]
        mlb.fit(labels)
        train_labels = [class_label.split(", ") for class_label in self.y_train]
        test_labels = [class_label.split(", ") for class_label in self.y_test]

        y_train = mlb.transform(train_labels)
        y_test = mlb.transform(test_labels)
        clf = MultiOutputRegressor(
            LogisticRegression(
                random_state=self.seed, solver="lbfgs", max_iter=self.max_iter
            )
        ).fit(self.embeds_train, y_train)
        y_pred = clf.predict(self.embeds_test)

        results_dict = classification_report(y_test, y_pred, output_dict=True)
        assert isinstance(
            results_dict, dict
        ), "Should always be true since `output_dict=True` is passed to sklearn.metric.classification_report"
        scores["precision"] = results_dict["macro avg"]["precision"]
        scores["recall"] = results_dict["macro avg"]["recall"]
        scores["f1"] = results_dict["macro avg"]["f1-score"]
        scores["accuracy"] = accuracy_score(y_test, y_pred)

        return scores


class MultiClassMultiOutputKNNClassificationEvaluator(Evaluator):
    def __init__(
        self,
        embeds_train,
        y_train,
        embeds_test,
        y_test,
        n_neighbors=5,
        **kwargs,
    ):
        super().__init__(**kwargs)
        self.embeds_train = embeds_train
        self.y_train = y_train
        self.embeds_test = embeds_test
        self.y_test = y_test
        self.n_neighbors = n_neighbors

    def __call__(self):
        scores = {}

        mlb = MultiLabelBinarizer()
        class_labels = list(self.y_train) + list(self.y_test)
        labels = [class_label.split(", ") for class_label in class_labels]
        mlb.fit(labels)
        train_labels = [class_label.split(", ") for class_label in self.y_train]
        test_labels = [class_label.split(", ") for class_label in self.y_test]

        y_train = mlb.transform(train_labels)
        y_test = mlb.transform(test_labels)
        clf = sklearn.neighbors.KNeighborsClassifier(
            n_neighbors=self.n_neighbors, metric="cosine"
        )
        logger.info("Fitting KNN classifier...")
        clf.fit(self.embeds_train, y_train)
        logger.info("Evaluating...")
        y_pred = clf.predict(self.embeds_test)
        accuracy = accuracy_score(y_test, y_pred)
        f1 = f1_score(y_test, y_pred, average="macro")
        precision = precision_score(y_test, y_pred, average="macro")
        recall = recall_score(y_test, y_pred, average="macro")
        lrap = label_ranking_average_precision_score(y_test, y_pred)
        scores["f1"] = f1
        scores["accuracy"] = accuracy
        scores["precision"] = precision
        scores["recall"] = recall
        scores["lrap"] = lrap

        return scores


class BiGeneMiningEvaluator(Evaluator):
    """
    BiGene Mining Evaluator, analogous to Bitext Mining Evaluator https://github.com/embeddings-benchmark/mteb/blob/main/mteb/evaluation/evaluators/BitextMiningEvaluator.py.

    If top_k > 1, then recall@k is also computed.
    """

    def __init__(self, embeds1, embeds2, top_k=1, **kwargs):
        super().__init__(**kwargs)
        self.n = len(embeds1)
        self.embeds1 = np.array(embeds1)
        self.embeds2 = np.array(embeds2)
        self.gold = list(zip(range(self.n), range(self.n)))
        self.top_k = top_k

    def __call__(self):
        scores = self.compute_metrics()
        return scores

    def compute_metrics(self):
        logger.info(f"Finding nearest neighbors... with top_k={self.top_k}")
        nearest_neighbors = self._similarity_search(
            self.embeds1, self.embeds2, top_k=self.top_k
        )

        # Compute errors
        logger.info("Computing metrics...")
        labels = []
        predictions = []

        # Get predictions and labels for top_k=1.
        for i, x in enumerate(nearest_neighbors):
            j = x[0]["corpus_id"]
            predictions.append(j)
            labels.append(self.gold[i][1])

        scores = {
            "precision": precision_score(
                labels, predictions, zero_division=0, average="weighted"
            ),
            "recall": recall_score(
                labels, predictions, zero_division=0, average="weighted"
            ),
            "f1": f1_score(labels, predictions, zero_division=0, average="weighted"),
            "accuracy": accuracy_score(labels, predictions),
        }

        if self.top_k > 1:
            # Compute recall@k.
            top_k_preds = []
            for i, x in enumerate(nearest_neighbors):
                top_k_preds.append([pred["corpus_id"] for pred in x])
            top_k_recall = [
                self.gold[i][1] in top_k_pred
                for i, top_k_pred in enumerate(top_k_preds)
            ]
            scores[f"recall_at_{self.top_k}"] = sum(top_k_recall) / len(top_k_recall)
        return scores

    def _similarity_search(
        self,
        query_embeddings,
        corpus_embeddings,
        query_chunk_size=100,
        corpus_chunk_size=500000,
        top_k=1,
        score_function=cos_sim,
    ):
        """This function performs a cosine similarity search between a list of query embeddings  and a list of corpus embeddings.
        It can be used for Information Retrieval / Semantic Search for corpora up to about 1 Million entries.
        :param query_embeddings: A 2 dimensional tensor with the query embeddings.
        :param corpus_embeddings: A 2 dimensional tensor with the corpus embeddings.
        :param query_chunk_size: Process 100 queries simultaneously. Increasing that value increases the speed, but requires more memory.
        :param corpus_chunk_size: Scans the corpus 50k entries at a time. Increasing that value increases the speed, but requires more memory.
        :param top_k: Retrieve top k matching entries.
        :param score_function: Function for computing scores. By default, cosine similarity.
        :return: Returns a list with one entry for each query. Each entry is a list of dictionaries with the keys 'corpus_id' and 'score', sorted by decreasing cosine similarity scores.
        """
        query_embeddings = torch.from_numpy(query_embeddings)
        corpus_embeddings = torch.from_numpy(corpus_embeddings)
        if len(query_embeddings.shape) == 1:
            query_embeddings = query_embeddings.unsqueeze(0)
        if len(corpus_embeddings.shape) == 1:
            corpus_embeddings = corpus_embeddings.unsqueeze(0)

        # Check that corpus and queries are on the same device
        if corpus_embeddings.device != query_embeddings.device:
            query_embeddings = query_embeddings.to(corpus_embeddings.device)

        queries_result_list = [[] for _ in range(len(query_embeddings))]

        for query_start_idx in range(0, len(query_embeddings), query_chunk_size):
            # Iterate over chunks of the corpus
            for corpus_start_idx in range(0, len(corpus_embeddings), corpus_chunk_size):
                # Compute cosine similarities
                cos_scores = score_function(
                    query_embeddings[
                        query_start_idx : query_start_idx + query_chunk_size
                    ],
                    corpus_embeddings[
                        corpus_start_idx : corpus_start_idx + corpus_chunk_size
                    ],
                )

                # Get top-k scores
                cos_scores_top_k_values, cos_scores_top_k_idx = torch.topk(
                    cos_scores,
                    min(top_k, len(cos_scores[0])),
                    dim=1,
                    largest=True,
                    sorted=False,
                )
                cos_scores_top_k_values = cos_scores_top_k_values.cpu().tolist()
                cos_scores_top_k_idx = cos_scores_top_k_idx.cpu().tolist()

                for query_itr in range(len(cos_scores)):
                    for sub_corpus_id, score in zip(
                        cos_scores_top_k_idx[query_itr],
                        cos_scores_top_k_values[query_itr],
                    ):
                        corpus_id = corpus_start_idx + sub_corpus_id
                        query_id = query_start_idx + query_itr
                        queries_result_list[query_id].append(
                            {"corpus_id": corpus_id, "score": score}
                        )

        # Sort and strip to top_k results
        for idx in range(len(queries_result_list)):
            queries_result_list[idx] = sorted(
                queries_result_list[idx], key=lambda x: x["score"], reverse=True
            )
            queries_result_list[idx] = queries_result_list[idx][0:top_k]

        return queries_result_list


class EDSEvaluator(Evaluator):
    """
    Evolutionary Distance Similarity Evaluator, analogous to Semantic Textual Similarity Evaluator.
    Adapted from https://github.com/embeddings-benchmark/mteb/blob/main/mteb/evaluation/evaluators/STSEvaluator.py
    """

    def __init__(self, embeds1, embeds2, gold_scores, **kwargs):
        super().__init__(**kwargs)
        self.embeds1 = embeds1
        self.embeds2 = embeds2
        self.gold_scores = gold_scores

    def __call__(self):
        embeddings1 = np.array(self.embeds1)
        embeddings2 = np.array(self.embeds2)
        logger.info("Evaluating...")
        cosine_scores = paired_cosine_distances(embeddings1, embeddings2)
        manhattan_distances = paired_manhattan_distances(embeddings1, embeddings2)
        euclidean_distances = paired_euclidean_distances(embeddings1, embeddings2)

        cosine_pearson, _ = pearsonr(self.gold_scores, cosine_scores)
        manhattan_pearson, _ = pearsonr(self.gold_scores, manhattan_distances)
        euclidean_pearson, _ = pearsonr(self.gold_scores, euclidean_distances)

        top_corr = max(
            cosine_pearson,
            manhattan_pearson,
            euclidean_pearson,
        )
        return {
            "cos_sim": cosine_pearson,
            "manhattan": manhattan_pearson,
            "euclidean": euclidean_pearson,
            "top_corr": top_corr,
        }


class RetrievalEvaluator(Evaluator):
    """Adapted from
    https://github.com/embeddings-benchmark/mteb/blob/main/mteb/evaluation/evaluators/RetrievalEvaluator.py
    """

    def __init__(
        self,
        corpus_embeds,
        query_embeds,
        corpus_ids,
        query_ids,
        qrels: Dict[str, Dict[str, int]],
        k_values: List[int] = [5, 10, 50],
        score_function: str = "cos_sim",
        corpus_chunk_size: int = 50000,
        **kwargs,
    ):
        super().__init__(**kwargs)
        self.corpus_embeds = corpus_embeds
        self.query_embeds = query_embeds
        self.corpus_ids = corpus_ids
        self.query_ids = query_ids
        self.qrels = qrels
        self.k_values = k_values
        self.top_k = max(k_values) if "top_k" not in kwargs else kwargs["top_k"]
        self.score_function = score_function
        self.score_functions = {
            "cos_sim": cos_sim,
            "dot": dot_score,
        }
        self.corpus_chunk_size = corpus_chunk_size

    def __call__(self):
        results = self.search(
            self.corpus_embeds,
            self.query_embeds,
            self.corpus_ids,
            self.query_ids,
            self.top_k,
            self.score_function,
        )
        ndcg, _map, recall, precision, naucs = self.evaluate(
            self.qrels, results, self.k_values
        )
        mrr, naucs_mrr = self.evaluate_custom(self.qrels, results, self.k_values, "mrr")
        scores = {
            **{f"ndcg_at_{k.split('@')[1]}": v for (k, v) in ndcg.items()},
            **{f"map_at_{k.split('@')[1]}": v for (k, v) in _map.items()},
            **{f"recall_at_{k.split('@')[1]}": v for (k, v) in recall.items()},
            **{f"precision_at_{k.split('@')[1]}": v for (k, v) in precision.items()},
            **{f"mrr_at_{k.split('@')[1]}": v for (k, v) in mrr.items()},
            **{
                k.replace("@", "_at_").replace("_P", "_precision").lower(): v
                for k, v in naucs.items()
            },
            **{
                k.replace("@", "_at_").replace("_P", "_precision").lower(): v
                for k, v in naucs_mrr.items()
            },
        }
        return scores

    def search(
        self,
        corpus_embeds,
        query_embeds,
        corpus_ids,
        query_ids,
        top_k: int,
        score_function: str,
        return_sorted: bool = False,
        **kwargs,
    ) -> dict[str, dict[str, float]]:
        # Create embeddings for all queries using model.encode()
        # Runs semantic search against the corpus embeddings
        # Returns a ranked list with the corpus ids
        if score_function not in self.score_functions:
            raise ValueError(
                f"score function: {score_function} must be either (cos_sim) for cosine similarity or (dot) for dot product"
            )
        # make query embeds and corpus embeds torch tensors
        query_embeds = torch.from_numpy(query_embeds)
        corpus_embeds = torch.from_numpy(corpus_embeds)
        itr = range(0, len(corpus_embeds), self.corpus_chunk_size)
        results = defaultdict(dict)
        # Keep only the top-k docs for each query
        result_heaps = defaultdict(list)
        for batch_num, corpus_start_idx in enumerate(itr):
            logger.info("Searching Batch {}/{}...".format(batch_num + 1, len(itr)))
            corpus_end_idx = min(
                corpus_start_idx + self.corpus_chunk_size, len(corpus_ids)
            )
            sub_corpus_embeds = corpus_embeds[corpus_start_idx:corpus_end_idx]
            # Compute similarites using either cosine-similarity or dot product
            cos_scores = self.score_functions[score_function](
                query_embeds, sub_corpus_embeds
            )
            cos_scores[torch.isnan(cos_scores)] = -1

            # Get top-k values
            cos_scores_top_k_values, cos_scores_top_k_idx = torch.topk(
                cos_scores,
                min(
                    top_k + 1,
                    len(cos_scores[1]) if len(cos_scores) > 1 else len(cos_scores[-1]),
                ),
                dim=1,
                largest=True,
                sorted=return_sorted,
            )
            cos_scores_top_k_values = cos_scores_top_k_values.cpu().tolist()
            cos_scores_top_k_idx = cos_scores_top_k_idx.cpu().tolist()

            for query_itr in range(len(query_embeds)):
                query_id = query_ids[query_itr]
                for sub_corpus_id, score in zip(
                    cos_scores_top_k_idx[query_itr], cos_scores_top_k_values[query_itr]
                ):
                    corpus_id = corpus_ids[corpus_start_idx + sub_corpus_id]
                    if corpus_id != query_id:
                        if len(result_heaps[query_id]) < top_k:
                            # Push item on the heap
                            heapq.heappush(result_heaps[query_id], (score, corpus_id))
                        else:
                            # If item is larger than the smallest in the heap, push it on the heap then pop the smallest element
                            heapq.heappushpop(
                                result_heaps[query_id], (score, corpus_id)
                            )

        for qid in result_heaps:
            for score, corpus_id in result_heaps[qid]:
                results[qid][corpus_id] = score

        return results

    @staticmethod
    def evaluate(
        qrels: dict[str, dict[str, int]],
        results: dict[str, dict[str, float]],
        k_values: List[int],
        ignore_identical_ids: bool = True,
    ) -> Tuple[Dict[str, float], dict[str, float], dict[str, float], dict[str, float]]:
        if ignore_identical_ids:
            logger.info(
                "For evaluation, we ignore identical query and document ids (default), please explicitly set ``ignore_identical_ids=False`` to ignore this."
            )
            popped = []
            for qid, rels in results.items():
                for pid in list(rels):
                    if qid == pid:
                        results[qid].pop(pid)
                        popped.append(pid)

        all_ndcgs, all_aps, all_recalls, all_precisions = {}, {}, {}, {}

        for k in k_values:
            all_ndcgs[f"NDCG@{k}"] = []
            all_aps[f"MAP@{k}"] = []
            all_recalls[f"Recall@{k}"] = []
            all_precisions[f"P@{k}"] = []

        map_string = "map_cut." + ",".join([str(k) for k in k_values])
        ndcg_string = "ndcg_cut." + ",".join([str(k) for k in k_values])
        recall_string = "recall." + ",".join([str(k) for k in k_values])
        precision_string = "P." + ",".join([str(k) for k in k_values])
        evaluator = pytrec_eval.RelevanceEvaluator(
            qrels, {map_string, ndcg_string, recall_string, precision_string}
        )
        scores = evaluator.evaluate(results)

        for query_id in scores.keys():
            for k in k_values:
                all_ndcgs[f"NDCG@{k}"].append(scores[query_id]["ndcg_cut_" + str(k)])
                all_aps[f"MAP@{k}"].append(scores[query_id]["map_cut_" + str(k)])
                all_recalls[f"Recall@{k}"].append(scores[query_id]["recall_" + str(k)])
                all_precisions[f"P@{k}"].append(scores[query_id]["P_" + str(k)])
        ndcg, _map, recall, precision = (
            all_ndcgs.copy(),
            all_aps.copy(),
            all_recalls.copy(),
            all_precisions.copy(),
        )

        for k in k_values:
            ndcg[f"NDCG@{k}"] = round(sum(ndcg[f"NDCG@{k}"]) / len(scores), 5)
            _map[f"MAP@{k}"] = round(sum(_map[f"MAP@{k}"]) / len(scores), 5)
            recall[f"Recall@{k}"] = round(sum(recall[f"Recall@{k}"]) / len(scores), 5)
            precision[f"P@{k}"] = round(sum(precision[f"P@{k}"]) / len(scores), 5)
        naucs = RetrievalEvaluator.evaluate_abstention(
            results, {**all_ndcgs, **all_aps, **all_recalls, **all_precisions}
        )
        return ndcg, _map, recall, precision, naucs

    @staticmethod
    def evaluate_abstention(
        results: dict[str, dict[str, float]],
        metric_scores: dict[str, list[float]],
    ) -> Dict[str, float]:
        """Computes normalized Area Under the Curve on a set of evaluated instances as presented in the paper https://arxiv.org/abs/2402.12997"""
        all_sim_scores = [list(results[qid].values()) for qid in list(results.keys())]
        all_conf_scores = [
            confidence_scores(sim_scores) for sim_scores in all_sim_scores
        ]
        conf_fcts = list(all_conf_scores[0].keys())
        all_conf_scores = {
            fct: np.array([x[fct] for x in all_conf_scores]) for fct in conf_fcts
        }
        metric_scores = {k: np.array(v) for k, v in metric_scores.items()}
        naucs = {}

        for metric_name, scores in metric_scores.items():
            for fct, conf_scores in all_conf_scores.items():
                naucs[f"nAUC_{metric_name}_{fct}"] = nAUC(conf_scores, scores)

        return naucs

    @staticmethod
    def evaluate_custom(
        qrels: dict[str, dict[str, int]],
        results: dict[str, dict[str, float]],
        k_values: List[int],
        metric: str,
        output_type: str = "all",
    ) -> Tuple[Dict[str, float]]:
        if metric.lower() in ["mrr", "mrr@k", "mrr_cut"]:
            metric_scores = mrr(qrels, results, k_values, output_type)

        elif metric.lower() in ["recall_cap", "r_cap", "r_cap@k"]:
            metric_scores = recall_cap(qrels, results, k_values, output_type)

        elif metric.lower() in ["hole", "hole@k"]:
            metric_scores = hole(qrels, results, k_values, output_type)

        elif metric.lower() in [
            "acc",
            "top_k_acc",
            "accuracy",
            "accuracy@k",
            "top_k_accuracy",
        ]:
            metric_scores = top_k_accuracy(qrels, results, k_values, output_type)

        naucs = RetrievalEvaluator.evaluate_abstention(results, metric_scores)
        metric_scores_avg = {k: sum(v) / len(v) for k, v in metric_scores.items()}

        return metric_scores_avg, naucs