Spaces:
Sleeping
Sleeping
File size: 10,525 Bytes
566f3c9 e284167 566f3c9 e284167 566f3c9 e284167 566f3c9 e284167 566f3c9 e284167 c81374f e284167 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
import importlib.util
import json
import math
from pathlib import Path
from typing import List
import gradio as gr
import pandas as pd
from pydantic import ValidationError, parse_obj_as
SIG_FIGS = 4
# HACK: very hacky way to import from parent directory, while avoiding needing all the deps of the parent package
modality_path = "../dgeb/modality.py"
spec = importlib.util.spec_from_file_location("modality", modality_path)
modality = importlib.util.module_from_spec(spec)
spec.loader.exec_module(modality)
Modality = modality.Modality
tasks_path = "../dgeb/tasks/tasks.py"
# Load the module
spec = importlib.util.spec_from_file_location("tasks", tasks_path)
tasks = importlib.util.module_from_spec(spec)
spec.loader.exec_module(tasks)
TaskResult = tasks.TaskResult
DGEBModel = tasks.DGEBModel
# Assuming the class definitions provided above are complete and imported here
def format_num_params(param: int) -> str:
# if the number of parameters is greater than 1 billion, display billion
million = 1_000_000
# billion = 1_000_000_000
# if param >= billion:
# num_billions = int(param / 1_000_000_000)
# return f"{num_billions:}B"
if param >= million:
num_millions = int(param / 1_000_000)
return f"{num_millions:}M"
else:
return f"{param:,}"
def load_json_files_from_directory(directory_path: Path) -> List[dict]:
"""
Recursively load all JSON files within the specified directory path.
:param directory_path: Path to the directory to search for JSON files.
:return: List of dictionaries loaded from JSON files.
"""
json_files_content = []
for json_file in directory_path.rglob("*.json"): # Recursively find all JSON files
try:
with open(json_file, "r", encoding="utf-8") as file:
json_content = json.load(file)
json_files_content.append(json_content)
except Exception as e:
print(f"Error loading {json_file}: {e}")
return json_files_content
def load_results() -> List[TaskResult]:
"""
Recursively load JSON files in ./submissions/** and return a list of TaskResult objects.
"""
submissions_path = Path("./submissions")
json_contents = load_json_files_from_directory(submissions_path)
task_results_objects = []
for content in json_contents:
try:
task_result = parse_obj_as(
TaskResult, content
) # Using Pydantic's parse_obj_as for creating TaskResult objects
task_results_objects.append(task_result)
except ValidationError as e:
print(f"Error parsing TaskResult object: {e}")
raise e
return task_results_objects
def task_results_to_dgeb_score(
model: DGEBModel, model_results: List[TaskResult]
) -> dict:
best_scores_per_task = []
modalities_seen = set()
for task_result in model_results:
modalities_seen.add(task_result.task.modality)
assert (
task_result.model.hf_name == model.hf_name
), f"Model names do not match, {task_result.model.hf_name} != {model.hf_name}"
primary_metric_id = task_result.task.primary_metric_id
scores = []
# Get the primary score for each layer.
for result in task_result.results:
for metric in result.metrics:
if metric.id == primary_metric_id:
scores.append(metric.value)
best_score = max(scores)
best_scores_per_task.append(best_score)
assert (
len(modalities_seen) == 1
), f"Multiple modalities found for model {model.hf_name}"
# Calculate the average of the best scores for each task.
assert len(best_scores_per_task) > 0, f"No tasks found for model {model.hf_name}"
dgeb_score = sum(best_scores_per_task) / len(best_scores_per_task)
return {
"Task Name": "DGEB Score",
"Task Category": "DGEB",
"Model": model.hf_name,
"Modality": list(modalities_seen)[0],
"Num. Parameters (millions)": format_num_params(model.num_params),
"Emb. Dimension": model.embed_dim,
"Score": dgeb_score,
}
def task_results_to_df(model_results: List[TaskResult]) -> pd.DataFrame:
# Initialize an empty list to hold all rows of data
data_rows = []
all_models = {}
for res in model_results:
task = res.task
model = res.model
all_models[model.hf_name] = model
print(f"Processing {task.display_name} for {model.hf_name}")
for layer in res.results:
total_layers = model.num_layers - 1
mid_layer = math.ceil(total_layers / 2)
if mid_layer == layer.layer_number:
layer.layer_display_name = "mid"
elif total_layers == layer.layer_number:
layer.layer_display_name = "last"
if layer.layer_display_name not in ["mid", "last"]:
# calculate if the layer is mid or last
print(
f"Layer {layer.layer_number} is not mid or last out of {total_layers}. Skipping"
)
continue
else:
# For each Metric in the Layer
# pivoting the data so that each metric is a row
metric_ids = []
primary_metric_label = f"{task.primary_metric_id} (primary metric)"
for metric in layer.metrics:
if task.primary_metric_id == metric.id:
metric_ids.append(primary_metric_label)
else:
metric_ids.append(metric.id)
metric_values = [metric.value for metric in layer.metrics]
zipped = zip(metric_ids, metric_values)
# sort primary metric id first
sorted_zip = sorted(
zipped,
key=lambda x: x[0] != primary_metric_label,
)
data_rows.append(
{
"Task Name": task.display_name,
"Task Category": task.type,
"Model": model.hf_name,
"Num. Parameters (millions)": format_num_params(
model.num_params
),
"Emb. Dimension": model.embed_dim,
"Modality": task.modality,
"Layer": layer.layer_display_name,
**dict(sorted_zip),
}
)
for model_name, model in all_models.items():
results_for_model = [
res for res in model_results if res.model.hf_name == model_name
]
assert len(results_for_model) > 0, f"No results found for model {model_name}"
dgeb_score_record = task_results_to_dgeb_score(model, results_for_model)
print(f'model {model.hf_name} dgeb score: {dgeb_score_record["Score"]}')
data_rows.append(dgeb_score_record)
print("Finished processing all results")
df = pd.DataFrame(data_rows)
return df
df = task_results_to_df(load_results())
image_path = "./DGEB_Figure.png"
with gr.Blocks() as demo:
gr.Label("Diverse Genomic Embedding Benchmark", show_label=False, scale=2)
gr.HTML(
f"<img src='file/{image_path}' alt='DGEB Figure' style='border-radius: 0.8rem; width: 50%; margin-left: auto; margin-right: auto; margin-top:12px;'>"
)
gr.HTML(
"""
<div style='width: 50%; margin-left: auto; margin-right: auto; padding-bottom: 8px;text-align: center;'>
DGEB Leaderboard. To submit, refer to the <a href="https://github.com/TattaBio/DGEB/blob/leaderboard/README.md" target="_blank" style="text-decoration: underline">DGEB GitHub repository</a> Refer to the <a href="https://www.tatta.bio/dgeb" target="_blank" style="text-decoration: underline">DGEB paper</a> for details on metrics, tasks, and models.
</div>
"""
)
unique_categories = df["Task Category"].unique()
# sort "DGEB" to the start
unique_categories = sorted(unique_categories, key=lambda x: x != "DGEB")
for category in unique_categories:
with gr.Tab(label=category):
unique_tasks_in_category = df[df["Task Category"] == category][
"Task Name"
].unique()
# sort "Overall" to the start
unique_tasks_in_category = sorted(
unique_tasks_in_category, key=lambda x: x != "Overall"
)
for task in unique_tasks_in_category:
with gr.Tab(label=task):
columns_to_hide = ["Task Name", "Task Category"]
# get rows where Task Name == task and Task Category == category
filtered_df = (
df[
(df["Task Name"] == task)
& (df["Task Category"] == category)
].drop(columns=columns_to_hide)
).dropna(axis=1, how="all") # drop all NaN columns for Overall tab
# round all values to 4 decimal places
rounded_df = filtered_df.round(SIG_FIGS)
# calculate ranking column
# if in Overview tab, rank by average metric value
if task == "Overall":
# rank by average col
rounded_df["Rank"] = filtered_df["Average"].rank(
ascending=False
)
else:
avoid_cols = [
"Model",
"Emb. Dimension",
"Num. Parameters (millions)",
"Modality",
"Layer",
]
rounded_df["Rank"] = (
rounded_df.drop(columns=avoid_cols, errors="ignore")
.sum(axis=1)
.rank(ascending=False)
)
# make Rank first column
cols = list(rounded_df.columns)
cols.insert(0, cols.pop(cols.index("Rank")))
rounded_df = rounded_df[cols]
# sort by rank
rounded_df = rounded_df.sort_values("Rank")
data_frame = gr.DataFrame(rounded_df)
demo.launch(allowed_paths=["."])
|