File size: 9,683 Bytes
b985dea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
import os
import sys
from fastapi import FastAPI, Request, UploadFile, File, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from fastapi.staticfiles import StaticFiles
from fastapi.responses import JSONResponse, FileResponse, HTMLResponse
import uvicorn
import time
import shutil
import glob
import datetime
from random import choice
import torch
import torchvision
from torchvision import transforms
from torch import nn
import numpy as np
import cv2
import face_recognition
from PIL import Image as pImage
import matplotlib.pyplot as plt
import matplotlib
matplotlib.use('Agg')  # Use non-GUI backend for matplotlib
from typing import List
import base64
import io

app = FastAPI()

# Configure CORS
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Create directories if they don't exist
os.makedirs("uploaded_images", exist_ok=True)
os.makedirs("static", exist_ok=True)
os.makedirs("uploaded_videos", exist_ok=True)
os.makedirs("models", exist_ok=True)

# Mount static files
app.mount("/uploaded_images", StaticFiles(directory="uploaded_images"), name="uploaded_images")
app.mount("/static", StaticFiles(directory="static"), name="static")
app.mount("/assets", StaticFiles(directory="frontend/dist/assets"), name="assets")

# Configuration
im_size = 112
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
sm = nn.Softmax(dim=1)
inv_normalize = transforms.Normalize(
    mean=-1*np.divide(mean, std), std=np.divide([1, 1, 1], std))

train_transforms = transforms.Compose([
    transforms.ToPILImage(),
    transforms.Resize((im_size, im_size)),
    transforms.ToTensor(),
    transforms.Normalize(mean, std)])

ALLOWED_VIDEO_EXTENSIONS = {'mp4', 'gif', 'webm', 'avi', '3gp', 'wmv', 'flv', 'mkv'}

# Detects GPU in device 
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

class Model(nn.Module):
    def __init__(self, num_classes, latent_dim=2048, lstm_layers=1, hidden_dim=2048, bidirectional=False):
        super(Model, self).__init__()
        model = torchvision.models.resnext50_32x4d(weights=torchvision.models.ResNeXt50_32X4D_Weights.DEFAULT)
        self.model = nn.Sequential(*list(model.children())[:-2])
        self.lstm = nn.LSTM(latent_dim, hidden_dim, lstm_layers, bidirectional)
        self.relu = nn.LeakyReLU()
        self.dp = nn.Dropout(0.4)
        self.linear1 = nn.Linear(2048, num_classes)
        self.avgpool = nn.AdaptiveAvgPool2d(1)

    def forward(self, x):
        batch_size, seq_length, c, h, w = x.shape
        x = x.view(batch_size * seq_length, c, h, w)
        fmap = self.model(x)
        x = self.avgpool(fmap)
        x = x.view(batch_size, seq_length, 2048)
        x_lstm, _ = self.lstm(x, None)
        return fmap, self.dp(self.linear1(x_lstm[:, -1, :]))

class ValidationDataset(torch.utils.data.Dataset):
    def __init__(self, video_names, sequence_length=60, transform=None):
        self.video_names = video_names
        self.transform = transform
        self.count = sequence_length

    def __len__(self):
        return len(self.video_names)

    def __getitem__(self, idx):
        video_path = self.video_names[idx]
        frames = []
        a = int(100/self.count)
        first_frame = np.random.randint(0, a)
        for i, frame in enumerate(self.frame_extract(video_path)):
            faces = face_recognition.face_locations(frame)
            try:
                top, right, bottom, left = faces[0]
                frame = frame[top:bottom, left:right, :]
            except:
                pass
            frames.append(self.transform(frame))
            if (len(frames) == self.count):
                break
        frames = torch.stack(frames)
        frames = frames[:self.count]
        return frames.unsqueeze(0)  # Shape: (1, seq_len, C, H, W)

    def frame_extract(self, path):
        vidObj = cv2.VideoCapture(path)
        success = 1
        while success:
            success, image = vidObj.read()
            if success:
                yield image

def allowed_video_file(filename):
    return filename.split('.')[-1].lower() in ALLOWED_VIDEO_EXTENSIONS

def load_model(sequence_length=20):
    """Load the model from Hugging Face Hub if not available locally."""
    model_path = os.path.join("models", "model.pt")
    
    if not os.path.exists(model_path):
        try:
            from huggingface_hub import hf_hub_download
            model_path = hf_hub_download(repo_id="tayyabimam/Deepfake", 
                                         filename="model.pt", 
                                         local_dir="models")
        except Exception as e:
            raise Exception(f"Failed to download model: {str(e)}")
    
    # Load model
    model = Model(2).to(device)
    model.load_state_dict(torch.load(model_path, map_location=device))
    model.eval()
    return model

def im_convert(tensor, video_file_name=""):
    """Convert tensor to image for visualization."""
    image = tensor.to("cpu").clone().detach()
    image = image.squeeze()
    image = inv_normalize(image)
    image = image.numpy()
    image = image.transpose(1, 2, 0)
    image = image.clip(0, 1)
    return image

def generate_gradcam_heatmap(model, img, video_file_name=""):
    """Generate GradCAM heatmap showing areas of focus for deepfake detection."""
    # Forward pass
    fmap, logits = model(img)
    
    # Softmax on logits
    logits_softmax = sm(logits)
    confidence, prediction = torch.max(logits_softmax, 1)
    confidence_val = confidence.item() * 100
    pred_idx = prediction.item()
    
    # Get weights and feature maps
    weight_softmax = model.linear1.weight.detach().cpu().numpy()
    fmap_last = fmap[-1].detach().cpu().numpy()
    nc, h, w = fmap_last.shape
    fmap_reshaped = fmap_last.reshape(nc, h*w)
    
    # Compute GradCAM heatmap
    heatmap_raw = np.dot(fmap_reshaped.T, weight_softmax[pred_idx, :].T)
    heatmap_raw -= heatmap_raw.min()
    heatmap_raw /= heatmap_raw.max()
    heatmap_img = np.uint8(255 * heatmap_raw.reshape(h, w))
    
    # Resize heatmap to model input size
    heatmap_resized = cv2.resize(heatmap_img, (im_size, im_size))
    heatmap_colored = cv2.applyColorMap(heatmap_resized, cv2.COLORMAP_JET)
    
    # Convert original image tensor to numpy
    original_img = im_convert(img[:, -1, :, :, :])
    original_img_uint8 = (original_img * 255).astype(np.uint8)
    
    # Overlay heatmap on original image
    overlay = cv2.addWeighted(original_img_uint8, 0.6, heatmap_colored, 0.4, 0)
    
    # Save overlayed image
    timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
    result_filename = f"result_{timestamp}.jpg"
    save_path = os.path.join("static", result_filename)
    plt.figure(figsize=(10, 5))
    
    # Plot original and heatmap
    plt.subplot(1, 2, 1)
    plt.imshow(original_img)
    plt.title("Original")
    plt.axis('off')
    
    plt.subplot(1, 2, 2)
    plt.imshow(cv2.cvtColor(overlay, cv2.COLOR_BGR2RGB))
    plt.title(f"{'FAKE' if pred_idx == 1 else 'REAL'} ({confidence_val:.2f}%)")
    plt.axis('off')
    
    plt.tight_layout()
    plt.savefig(save_path)
    plt.close()
    
    return {
        "prediction": "FAKE" if pred_idx == 1 else "REAL",
        "confidence": confidence_val,
        "heatmap_url": f"/static/{result_filename}",
        "original_filename": video_file_name
    }

def predict_with_gradcam(model, img, video_file_name=""):
    """Predict with GradCAM visualization."""
    return generate_gradcam_heatmap(model, img, video_file_name)

@app.post("/api/upload-video")
async def api_upload_video(file: UploadFile = File(...), sequence_length: int = 20):
    """API endpoint for video upload and analysis."""
    if not allowed_video_file(file.filename):
        raise HTTPException(status_code=400, detail="Invalid file format. Supported formats: mp4, gif, webm, avi, 3gp, wmv, flv, mkv")
    
    # Save uploaded file
    temp_file = f"uploaded_videos/{file.filename}"
    with open(temp_file, "wb") as buffer:
        shutil.copyfileobj(file.file, buffer)
    
    try:
        # Process the video
        result = process_video(temp_file, sequence_length)
        return result
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

def process_video(video_file, sequence_length):
    """Process video for deepfake detection."""
    # Load model
    model = load_model(sequence_length)
    
    # Prepare dataset
    test_dataset = ValidationDataset(video_names=[video_file], 
                                    sequence_length=sequence_length,
                                    transform=train_transforms)
    
    # Get frames
    frames = test_dataset[0]
    frames = frames.to(device)
    
    # Make prediction with GradCAM
    result = predict_with_gradcam(model, frames, os.path.basename(video_file))
    
    return result

@app.get("/{path:path}")
async def serve_frontend(path: str):
    # First check if the path exists in the frontend dist
    if os.path.exists(f"frontend/dist/{path}"):
        return FileResponse(f"frontend/dist/{path}")
    
    # Otherwise return the index.html
    return FileResponse("frontend/dist/index.html")

@app.get("/", response_class=HTMLResponse)
async def root():
    return FileResponse("frontend/dist/index.html")

@app.get("/api")
async def api_root():
    """Root endpoint with API documentation."""
    return {
        "message": "Welcome to DeepSight DeepFake Detection API",
        "usage": "POST /api/upload-video with a video file to detect deepfakes"
    }

if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=7860)