Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Upload folder using huggingface_hub
Browse files- .gitignore +24 -0
- README.md +3 -9
- app.py +268 -0
- requirements.txt +8 -0
    	
        .gitignore
    ADDED
    
    | @@ -0,0 +1,24 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Ignore the virtual environment
         | 
| 2 | 
            +
            derm/
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            # Ignore model weights & large binary files
         | 
| 5 | 
            +
            model.h5
         | 
| 6 | 
            +
            scin_dataset_precomputed_embeddings.npz
         | 
| 7 | 
            +
             | 
| 8 | 
            +
            # Ignore system files
         | 
| 9 | 
            +
            __pycache__/
         | 
| 10 | 
            +
            *.pyc
         | 
| 11 | 
            +
            *.pyo
         | 
| 12 | 
            +
            .DS_Store
         | 
| 13 | 
            +
             | 
| 14 | 
            +
            # Ignore logs and temporary files
         | 
| 15 | 
            +
            logs/
         | 
| 16 | 
            +
            *.log
         | 
| 17 | 
            +
            *.out
         | 
| 18 | 
            +
            *.err
         | 
| 19 | 
            +
            .env
         | 
| 20 | 
            +
             | 
| 21 | 
            +
            # Ignore IDE/Editor files
         | 
| 22 | 
            +
            .vscode/
         | 
| 23 | 
            +
            .idea/
         | 
| 24 | 
            +
            *.swp
         | 
    	
        README.md
    CHANGED
    
    | @@ -1,12 +1,6 @@ | |
| 1 | 
             
            ---
         | 
| 2 | 
            -
            title:  | 
| 3 | 
            -
            emoji: 🔥
         | 
| 4 | 
            -
            colorFrom: blue
         | 
| 5 | 
            -
            colorTo: pink
         | 
| 6 | 
            -
            sdk: gradio
         | 
| 7 | 
            -
            sdk_version: 5.14.0
         | 
| 8 | 
             
            app_file: app.py
         | 
| 9 | 
            -
             | 
|  | |
| 10 | 
             
            ---
         | 
| 11 | 
            -
             | 
| 12 | 
            -
            Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
         | 
|  | |
| 1 | 
             
            ---
         | 
| 2 | 
            +
            title: derm-foundation
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 3 | 
             
            app_file: app.py
         | 
| 4 | 
            +
            sdk: gradio
         | 
| 5 | 
            +
            sdk_version: 4.44.1
         | 
| 6 | 
             
            ---
         | 
|  | |
|  | 
    	
        app.py
    ADDED
    
    | @@ -0,0 +1,268 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            #!/usr/bin/env python
         | 
| 2 | 
            +
            import os
         | 
| 3 | 
            +
            import io
         | 
| 4 | 
            +
            import numpy as np
         | 
| 5 | 
            +
            import pandas as pd
         | 
| 6 | 
            +
            import tensorflow as tf
         | 
| 7 | 
            +
            from tensorflow.keras import layers, regularizers
         | 
| 8 | 
            +
            from sklearn.preprocessing import MultiLabelBinarizer
         | 
| 9 | 
            +
            from sklearn.model_selection import train_test_split
         | 
| 10 | 
            +
            from google.cloud import storage
         | 
| 11 | 
            +
            from huggingface_hub import hf_hub_download, notebook_login, login
         | 
| 12 | 
            +
            from PIL import Image
         | 
| 13 | 
            +
            import gradio as gr
         | 
| 14 | 
            +
            import collections
         | 
| 15 | 
            +
            from dotenv import load_dotenv
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            # Load environment variables from .env file
         | 
| 18 | 
            +
            load_dotenv()
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            # Access and validate HF token
         | 
| 21 | 
            +
            hf_token = os.getenv('HF_TOKEN')
         | 
| 22 | 
            +
            if hf_token:
         | 
| 23 | 
            +
                login(token=hf_token)
         | 
| 24 | 
            +
            else:
         | 
| 25 | 
            +
                # Check if token exists in default location
         | 
| 26 | 
            +
                token_path = os.path.expanduser('~/.huggingface/token')
         | 
| 27 | 
            +
                if os.path.exists(token_path):
         | 
| 28 | 
            +
                    with open(token_path) as f:
         | 
| 29 | 
            +
                        login(token=f.read().strip())
         | 
| 30 | 
            +
                else:
         | 
| 31 | 
            +
                    print("Please set HF_TOKEN environment variable or store your token in ~/.huggingface/token")
         | 
| 32 | 
            +
                    exit(1)
         | 
| 33 | 
            +
             | 
| 34 | 
            +
            # ======================
         | 
| 35 | 
            +
            # CONSTANTS & CONFIGURATION
         | 
| 36 | 
            +
            # ======================
         | 
| 37 | 
            +
             | 
| 38 | 
            +
            SCIN_GCP_PROJECT = 'dx-scin-public'
         | 
| 39 | 
            +
            SCIN_GCS_BUCKET_NAME = 'dx-scin-public-data'
         | 
| 40 | 
            +
            SCIN_GCS_CASES_CSV = 'dataset/scin_cases.csv'
         | 
| 41 | 
            +
            SCIN_GCS_LABELS_CSV = 'dataset/scin_labels.csv'
         | 
| 42 | 
            +
             | 
| 43 | 
            +
            SCIN_HF_MODEL_NAME = 'google/derm-foundation'
         | 
| 44 | 
            +
            SCIN_HF_EMBEDDING_FILE = 'scin_dataset_precomputed_embeddings.npz'
         | 
| 45 | 
            +
             | 
| 46 | 
            +
            # The 10 conditions we want to predict
         | 
| 47 | 
            +
            CONDITIONS_TO_PREDICT = [
         | 
| 48 | 
            +
                'Eczema',
         | 
| 49 | 
            +
                'Allergic Contact Dermatitis',
         | 
| 50 | 
            +
                'Insect Bite',
         | 
| 51 | 
            +
                'Urticaria',
         | 
| 52 | 
            +
                'Psoriasis',
         | 
| 53 | 
            +
                'Folliculitis',
         | 
| 54 | 
            +
                'Irritant Contact Dermatitis',
         | 
| 55 | 
            +
                'Tinea',
         | 
| 56 | 
            +
                'Herpes Zoster',
         | 
| 57 | 
            +
                'Drug Rash'
         | 
| 58 | 
            +
            ]
         | 
| 59 | 
            +
             | 
| 60 | 
            +
            # ======================
         | 
| 61 | 
            +
            # HELPER FUNCTIONS FOR DATA LOADING
         | 
| 62 | 
            +
            # ======================
         | 
| 63 | 
            +
             | 
| 64 | 
            +
            def initialize_df_with_metadata(bucket, csv_path):
         | 
| 65 | 
            +
                csv_bytes = bucket.blob(csv_path).download_as_string()
         | 
| 66 | 
            +
                df = pd.read_csv(io.BytesIO(csv_bytes), dtype={'case_id': str})
         | 
| 67 | 
            +
                df['case_id'] = df['case_id'].astype(str)
         | 
| 68 | 
            +
                return df
         | 
| 69 | 
            +
             | 
| 70 | 
            +
            def augment_metadata_with_labels(df, bucket, csv_path):
         | 
| 71 | 
            +
                csv_bytes = bucket.blob(csv_path).download_as_string()
         | 
| 72 | 
            +
                labels_df = pd.read_csv(io.BytesIO(csv_bytes), dtype={'case_id': str})
         | 
| 73 | 
            +
                labels_df['case_id'] = labels_df['case_id'].astype(str)
         | 
| 74 | 
            +
                merged_df = pd.merge(df, labels_df, on='case_id')
         | 
| 75 | 
            +
                return merged_df
         | 
| 76 | 
            +
             | 
| 77 | 
            +
            def load_embeddings_from_file(repo_id, object_name):
         | 
| 78 | 
            +
                file_path = hf_hub_download(repo_id=repo_id, filename=object_name, local_dir='./')
         | 
| 79 | 
            +
                embeddings = {}
         | 
| 80 | 
            +
                with open(file_path, 'rb') as f:
         | 
| 81 | 
            +
                    npz_file = np.load(f, allow_pickle=True)
         | 
| 82 | 
            +
                    for key, value in npz_file.items():
         | 
| 83 | 
            +
                        embeddings[key] = value
         | 
| 84 | 
            +
                return embeddings
         | 
| 85 | 
            +
             | 
| 86 | 
            +
            # ======================
         | 
| 87 | 
            +
            # DATA PREPARATION FUNCTION
         | 
| 88 | 
            +
            # ======================
         | 
| 89 | 
            +
             | 
| 90 | 
            +
            def prepare_data(df, embeddings):
         | 
| 91 | 
            +
                MINIMUM_CONFIDENCE = 0  # Adjust this if needed.
         | 
| 92 | 
            +
                X = []
         | 
| 93 | 
            +
                y = []
         | 
| 94 | 
            +
                poor_image_quality_counter = 0
         | 
| 95 | 
            +
                missing_embedding_counter = 0
         | 
| 96 | 
            +
                not_in_condition_counter = 0
         | 
| 97 | 
            +
                condition_confidence_low_counter = 0
         | 
| 98 | 
            +
             | 
| 99 | 
            +
                for row in df.itertuples():
         | 
| 100 | 
            +
                    # Check if the image is marked as having sufficient quality.
         | 
| 101 | 
            +
                    if getattr(row, 'dermatologist_gradable_for_skin_condition_1', None) != 'DEFAULT_YES_IMAGE_QUALITY_SUFFICIENT':
         | 
| 102 | 
            +
                        poor_image_quality_counter += 1
         | 
| 103 | 
            +
                        continue
         | 
| 104 | 
            +
             | 
| 105 | 
            +
                    # Parse the labels and confidences.
         | 
| 106 | 
            +
                    try:
         | 
| 107 | 
            +
                        labels = eval(getattr(row, 'dermatologist_skin_condition_on_label_name', '[]'))
         | 
| 108 | 
            +
                        confidences = eval(getattr(row, 'dermatologist_skin_condition_confidence', '[]'))
         | 
| 109 | 
            +
                    except Exception as e:
         | 
| 110 | 
            +
                        continue
         | 
| 111 | 
            +
             | 
| 112 | 
            +
                    row_labels = []
         | 
| 113 | 
            +
                    for label, conf in zip(labels, confidences):
         | 
| 114 | 
            +
                        if label not in CONDITIONS_TO_PREDICT:
         | 
| 115 | 
            +
                            not_in_condition_counter += 1
         | 
| 116 | 
            +
                            continue
         | 
| 117 | 
            +
                        if conf < MINIMUM_CONFIDENCE:
         | 
| 118 | 
            +
                            condition_confidence_low_counter += 1
         | 
| 119 | 
            +
                            continue
         | 
| 120 | 
            +
                        row_labels.append(label)
         | 
| 121 | 
            +
             | 
| 122 | 
            +
                    # For each image associated with this case, add its embedding and labels.
         | 
| 123 | 
            +
                    for image_path in [getattr(row, 'image_1_path', None),
         | 
| 124 | 
            +
                                       getattr(row, 'image_2_path', None),
         | 
| 125 | 
            +
                                       getattr(row, 'image_3_path', None)]:
         | 
| 126 | 
            +
                        if pd.isna(image_path) or image_path is None:
         | 
| 127 | 
            +
                            continue
         | 
| 128 | 
            +
                        if image_path not in embeddings:
         | 
| 129 | 
            +
                            missing_embedding_counter += 1
         | 
| 130 | 
            +
                            continue
         | 
| 131 | 
            +
                        X.append(embeddings[image_path])
         | 
| 132 | 
            +
                        y.append(row_labels)
         | 
| 133 | 
            +
                
         | 
| 134 | 
            +
                print(f'Poor image quality count: {poor_image_quality_counter}')
         | 
| 135 | 
            +
                print(f'Missing embedding count: {missing_embedding_counter}')
         | 
| 136 | 
            +
                print(f'Condition not in list count: {not_in_condition_counter}')
         | 
| 137 | 
            +
                print(f'Excluded due to low confidence count: {condition_confidence_low_counter}')
         | 
| 138 | 
            +
                return X, y
         | 
| 139 | 
            +
             | 
| 140 | 
            +
            # ======================
         | 
| 141 | 
            +
            # MODEL BUILDING FUNCTION
         | 
| 142 | 
            +
            # ======================
         | 
| 143 | 
            +
             | 
| 144 | 
            +
            def build_model(input_dim, output_dim, weight_decay=1e-4):
         | 
| 145 | 
            +
                inputs = tf.keras.Input(shape=(input_dim,))
         | 
| 146 | 
            +
                hidden = layers.Dense(256, activation="relu",
         | 
| 147 | 
            +
                                      kernel_regularizer=regularizers.l2(weight_decay),
         | 
| 148 | 
            +
                                      bias_regularizer=regularizers.l2(weight_decay))(inputs)
         | 
| 149 | 
            +
                hidden = layers.Dropout(0.1)(hidden)
         | 
| 150 | 
            +
                hidden = layers.Dense(128, activation="relu",
         | 
| 151 | 
            +
                                      kernel_regularizer=regularizers.l2(weight_decay),
         | 
| 152 | 
            +
                                      bias_regularizer=regularizers.l2(weight_decay))(hidden)
         | 
| 153 | 
            +
                hidden = layers.Dropout(0.1)(hidden)
         | 
| 154 | 
            +
                output = layers.Dense(output_dim, activation="sigmoid")(hidden)
         | 
| 155 | 
            +
                model = tf.keras.Model(inputs, output)
         | 
| 156 | 
            +
                model.compile(loss="binary_crossentropy",
         | 
| 157 | 
            +
                              optimizer=tf.keras.optimizers.Adam(learning_rate=1e-4))
         | 
| 158 | 
            +
                return model
         | 
| 159 | 
            +
             | 
| 160 | 
            +
            # ======================
         | 
| 161 | 
            +
            # MAIN FUNCTION & GRADIO INTERFACE
         | 
| 162 | 
            +
            # ======================
         | 
| 163 | 
            +
             | 
| 164 | 
            +
            def main():
         | 
| 165 | 
            +
                # Connect to the Google Cloud Storage bucket.
         | 
| 166 | 
            +
                storage_client = storage.Client(SCIN_GCP_PROJECT)
         | 
| 167 | 
            +
                bucket = storage_client.bucket(SCIN_GCS_BUCKET_NAME)
         | 
| 168 | 
            +
                
         | 
| 169 | 
            +
                # Load SCIN dataset CSVs and merge them.
         | 
| 170 | 
            +
                df_cases = initialize_df_with_metadata(bucket, SCIN_GCS_CASES_CSV)
         | 
| 171 | 
            +
                df_full = augment_metadata_with_labels(df_cases, bucket, SCIN_GCS_LABELS_CSV)
         | 
| 172 | 
            +
                df_full.set_index('case_id', inplace=True)
         | 
| 173 | 
            +
                
         | 
| 174 | 
            +
                # Load precomputed embeddings from Hugging Face.
         | 
| 175 | 
            +
                print("Loading embeddings...")
         | 
| 176 | 
            +
                embeddings = load_embeddings_from_file(SCIN_HF_MODEL_NAME, SCIN_HF_EMBEDDING_FILE)
         | 
| 177 | 
            +
                
         | 
| 178 | 
            +
                # Prepare the training data.
         | 
| 179 | 
            +
                print("Preparing training data...")
         | 
| 180 | 
            +
                X, y = prepare_data(df_full, embeddings)
         | 
| 181 | 
            +
                X = np.array(X)
         | 
| 182 | 
            +
                # Convert the list of label lists to binary arrays.
         | 
| 183 | 
            +
                mlb = MultiLabelBinarizer(classes=CONDITIONS_TO_PREDICT)
         | 
| 184 | 
            +
                y_bin = mlb.fit_transform(y)
         | 
| 185 | 
            +
                
         | 
| 186 | 
            +
                # Split the data into train and test sets.
         | 
| 187 | 
            +
                X_train, X_test, y_train, y_test = train_test_split(X, y_bin, test_size=0.2, random_state=42)
         | 
| 188 | 
            +
                
         | 
| 189 | 
            +
                # Build the model.
         | 
| 190 | 
            +
                model = build_model(input_dim=6144, output_dim=len(CONDITIONS_TO_PREDICT))
         | 
| 191 | 
            +
                
         | 
| 192 | 
            +
                # If a saved model exists, load it; otherwise, train and save it.
         | 
| 193 | 
            +
                model_file = "model.h5"
         | 
| 194 | 
            +
                if os.path.exists(model_file):
         | 
| 195 | 
            +
                    print("Loading existing model from", model_file)
         | 
| 196 | 
            +
                    model = tf.keras.models.load_model(model_file)
         | 
| 197 | 
            +
                else:
         | 
| 198 | 
            +
                    print("Training model... This may take a few minutes.")
         | 
| 199 | 
            +
                    train_ds = tf.data.Dataset.from_tensor_slices((X_train, y_train)).batch(32)
         | 
| 200 | 
            +
                    test_ds = tf.data.Dataset.from_tensor_slices((X_test, y_test)).batch(32)
         | 
| 201 | 
            +
                    model.fit(train_ds, validation_data=test_ds, epochs=15)
         | 
| 202 | 
            +
                    model.save(model_file)
         | 
| 203 | 
            +
                
         | 
| 204 | 
            +
                # Extract a list of case IDs for dropdown
         | 
| 205 | 
            +
                case_ids = list(df_full.index)
         | 
| 206 | 
            +
             | 
| 207 | 
            +
                def predict_case(case_id: str):
         | 
| 208 | 
            +
                    """Fetch images and predictions for a given case ID."""
         | 
| 209 | 
            +
                    if case_id not in df_full.index:
         | 
| 210 | 
            +
                        return [], "Case ID not found!", "N/A", "N/A"
         | 
| 211 | 
            +
             | 
| 212 | 
            +
                    row = df_full.loc[case_id]
         | 
| 213 | 
            +
                    image_paths = [row.get('image_1_path'), row.get('image_2_path'), row.get('image_3_path')]
         | 
| 214 | 
            +
                    images, predictions_text = [], []
         | 
| 215 | 
            +
             | 
| 216 | 
            +
                    # Get Dermatologist's Labels
         | 
| 217 | 
            +
                    dermatologist_conditions = row.get('dermatologist_skin_condition_on_label_name', "N/A")
         | 
| 218 | 
            +
                    dermatologist_confidence = row.get('dermatologist_skin_condition_confidence', "N/A")
         | 
| 219 | 
            +
             | 
| 220 | 
            +
                    if isinstance(dermatologist_conditions, str):
         | 
| 221 | 
            +
                        try:
         | 
| 222 | 
            +
                            dermatologist_conditions = eval(dermatologist_conditions)
         | 
| 223 | 
            +
                            dermatologist_confidence = eval(dermatologist_confidence)
         | 
| 224 | 
            +
                        except:
         | 
| 225 | 
            +
                            pass
         | 
| 226 | 
            +
             | 
| 227 | 
            +
                    # Process images & generate predictions
         | 
| 228 | 
            +
                    for path in image_paths:
         | 
| 229 | 
            +
                        if isinstance(path, str) and (path in embeddings):
         | 
| 230 | 
            +
                            try:
         | 
| 231 | 
            +
                                img_bytes = bucket.blob(path).download_as_string()
         | 
| 232 | 
            +
                                img = Image.open(io.BytesIO(img_bytes)).convert("RGB")
         | 
| 233 | 
            +
                                images.append(img)
         | 
| 234 | 
            +
                            except:
         | 
| 235 | 
            +
                                continue
         | 
| 236 | 
            +
             | 
| 237 | 
            +
                            # Model Prediction
         | 
| 238 | 
            +
                            emb = np.expand_dims(embeddings[path], axis=0)
         | 
| 239 | 
            +
                            pred = model.predict(emb)[0]
         | 
| 240 | 
            +
                            pred_dict = {cond: round(float(prob), 3) for cond, prob in zip(mlb.classes_, pred)}
         | 
| 241 | 
            +
                            predictions_text.append(str(pred_dict))
         | 
| 242 | 
            +
             | 
| 243 | 
            +
                    # Format the output
         | 
| 244 | 
            +
                    predictions_text = "\n".join(predictions_text) if predictions_text else "No predictions available."
         | 
| 245 | 
            +
                    dermatologist_conditions = str(dermatologist_conditions)
         | 
| 246 | 
            +
                    dermatologist_confidence = str(dermatologist_confidence)
         | 
| 247 | 
            +
             | 
| 248 | 
            +
                    return images, predictions_text, dermatologist_conditions, dermatologist_confidence
         | 
| 249 | 
            +
             | 
| 250 | 
            +
                # Create the Gradio Interface with a Dropdown
         | 
| 251 | 
            +
                iface = gr.Interface(
         | 
| 252 | 
            +
                    fn=predict_case,
         | 
| 253 | 
            +
                    inputs=gr.Dropdown(choices=case_ids, label="Select a Case ID"),
         | 
| 254 | 
            +
                    outputs=[
         | 
| 255 | 
            +
                        gr.Gallery(label="Case Images"),
         | 
| 256 | 
            +
                        gr.Textbox(label="Model's Predictions"),
         | 
| 257 | 
            +
                        gr.Textbox(label="Dermatologist's Skin Conditions"),
         | 
| 258 | 
            +
                        gr.Textbox(label="Dermatologist's Confidence Ratings")
         | 
| 259 | 
            +
                    ],
         | 
| 260 | 
            +
                    title="Derm Foundation Skin Conditions Explorer",
         | 
| 261 | 
            +
                    description="Select a Case ID from the dropdown to view images and predictions."
         | 
| 262 | 
            +
                )
         | 
| 263 | 
            +
             | 
| 264 | 
            +
                iface.launch(share=True)
         | 
| 265 | 
            +
             | 
| 266 | 
            +
             | 
| 267 | 
            +
            if __name__ == "__main__":
         | 
| 268 | 
            +
                main()
         | 
    	
        requirements.txt
    ADDED
    
    | @@ -0,0 +1,8 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            gradio
         | 
| 2 | 
            +
            tensorflow
         | 
| 3 | 
            +
            numpy
         | 
| 4 | 
            +
            pandas
         | 
| 5 | 
            +
            scikit-learn
         | 
| 6 | 
            +
            google-cloud-storage
         | 
| 7 | 
            +
            huggingface_hub
         | 
| 8 | 
            +
            pillow
         |