Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,664 Bytes
71f5363 7d4ee71 71f5363 7d4ee71 6571814 ec6ec95 fe9c804 71f5363 7d4ee71 63c5b22 695bf10 7d4ee71 a2cff3a 9fb37c1 a2cff3a 79640f8 028ba65 a2cff3a 028ba65 6571814 a2cff3a 6571814 028ba65 7d4ee71 028ba65 79640f8 a2cff3a 79640f8 028ba65 79640f8 028ba65 79640f8 028ba65 79640f8 028ba65 79640f8 028ba65 79640f8 7d4ee71 028ba65 79640f8 7d4ee71 79640f8 028ba65 7d4ee71 79640f8 7d4ee71 79640f8 7d4ee71 79640f8 028ba65 7d4ee71 79640f8 028ba65 79640f8 7d4ee71 79640f8 028ba65 79640f8 028ba65 79640f8 028ba65 79640f8 fee7cbb 79640f8 cc842fe 028ba65 841fa13 79640f8 028ba65 79640f8 028ba65 79640f8 028ba65 79640f8 028ba65 79640f8 028ba65 b001fe7 028ba65 7d4ee71 028ba65 79640f8 028ba65 695bf10 028ba65 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
import gradio as gr
import numpy as np
import random
import torch
import spaces
from PIL import Image
from diffusers import FlowMatchEulerDiscreteScheduler
from optimization import optimize_pipeline_
from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline
from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3
import math
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
import os
from PIL import Image
import os
import gradio as gr
# --- Model Loading ---
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = QwenImageEditPlusPipeline.from_pretrained("Qwen/Qwen-Image-Edit-2509",
transformer= QwenImageTransformer2DModel.from_pretrained("linoyts/Qwen-Image-Edit-Rapid-AIO",
subfolder='transformer',
torch_dtype=dtype,
device_map='cuda'),torch_dtype=dtype).to(device)
pipe.load_lora_weights(
"dx8152/Qwen-Edit-2509-Multiple-angles",
weight_name="镜头转换.safetensors", adapter_name="angles"
)
# pipe.load_lora_weights(
# "lovis93/next-scene-qwen-image-lora-2509",
# weight_name="next-scene_lora-v2-3000.safetensors", adapter_name="next-scene"
# )
pipe.set_adapters(["angles"], adapter_weights=[1.])
pipe.fuse_lora(adapter_names=["angles"], lora_scale=1.25)
# pipe.fuse_lora(adapter_names=["next-scene"], lora_scale=1.)
pipe.unload_lora_weights()
pipe.transformer.__class__ = QwenImageTransformer2DModel
pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
optimize_pipeline_(pipe, image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))], prompt="prompt")
MAX_SEED = np.iinfo(np.int32).max
def build_camera_prompt(rotate_deg, move_forward, vertical_tilt, wideangle):
prompt_parts = []
# Rotation
if rotate_deg != 0:
direction = "left" if rotate_deg > 0 else "right"
if direction == "left":
prompt_parts.append(f"将镜头向左旋转{abs(rotate_deg)}度 Rotate the camera {abs(rotate_deg)} degrees to the left.")
else:
prompt_parts.append(f"将镜头向右旋转{abs(rotate_deg)}度 Rotate the camera {abs(rotate_deg)} degrees to the right.")
# Move forward / close-up
if move_forward >= 5:
prompt_parts.append("将镜头转为特写镜头 Turn the camera to a close-up.")
elif move_forward >= 1:
prompt_parts.append("将镜头向前移动 Move the camera forward.")
# Vertical tilt
if vertical_tilt <= -1:
prompt_parts.append("将相机转向鸟瞰视角 Turn the camera to a bird's-eye view.")
elif vertical_tilt >= 1:
prompt_parts.append("将相机切换到仰视视角 Turn the camera to a worm's-eye view.")
# Lens option
if wideangle:
prompt_parts.append(" 将镜头转为广角镜头 Turn the camera to a wide-angle lens.")
final_prompt = " ".join(prompt_parts).strip()
return final_prompt if final_prompt else ""
@spaces.GPU
def infer_camera_edit(
image,
prev_output,
rotate_deg,
move_forward,
vertical_tilt,
wideangle,
seed,
randomize_seed,
true_guidance_scale,
num_inference_steps,
height,
width,
):
prompt = build_camera_prompt(rotate_deg, move_forward, vertical_tilt, wideangle)
print(f"Generated Prompt: {prompt}")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
# Choose input image (prefer uploaded, else last output)
pil_images = []
if image is not None:
if isinstance(image, Image.Image):
pil_images.append(image.convert("RGB"))
elif hasattr(image, "name"):
pil_images.append(Image.open(image.name).convert("RGB"))
elif prev_output is not None:
pil_images.append(prev_output.convert("RGB"))
if len(pil_images) == 0:
raise gr.Error("Please upload an image first.")
result = pipe(
image=pil_images,
prompt=prompt,
height=height if height != 0 else None,
width=width if width != 0 else None,
num_inference_steps=num_inference_steps,
generator=generator,
true_cfg_scale=true_guidance_scale,
num_images_per_prompt=1,
).images[0]
return result, seed, prompt
# --- UI ---
css = "#col-container { max-width: 800px; margin: 0 auto; }"
is_reset = gr.State(value=False)
def reset_all():
return [0, 0, 0, 0, False, True]
def end_reset():
return False
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("## 🎬 Qwen Image Edit — Camera Angle Control")
gr.Markdown(
""
)
with gr.Row():
with gr.Column():
image = gr.Image(label="Input Image", type="pil", sources=["upload"])
prev_output = gr.State(value=None)
is_reset = gr.State(value=False)
with gr.Group():
rotate_deg = gr.Slider(label="Rotate Left–Right (°)", minimum=-90, maximum=90, step=45, value=0)
move_forward = gr.Slider(label="Move Forward → Close-Up", minimum=0, maximum=10, step=5, value=0)
vertical_tilt = gr.Slider(label="Vertical Angle (Bird ↔ Worm)", minimum=-1, maximum=1, step=1, value=0)
wideangle = gr.Checkbox(label="Wide-Angle Lens", value=False)
with gr.Row():
reset_btn = gr.Button("reset settings")
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
true_guidance_scale = gr.Slider(label="True Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=1.0)
num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=40, step=1, value=4)
height = gr.Slider(label="Height", minimum=256, maximum=2048, step=8, value=1024)
width = gr.Slider(label="Width", minimum=256, maximum=2048, step=8, value=1024)
run_btn = gr.Button("Generate", variant="primary", visible=False)
with gr.Column():
result = gr.Image(label="Output Image")
prompt_preview = gr.Textbox(label="Processed Prompt", interactive=False)
#gr.Markdown("_Each change applies a fresh camera instruction to the last output image._")
inputs = [
image, prev_output, rotate_deg, move_forward,
vertical_tilt, wideangle,
seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width
]
outputs = [result, seed, prompt_preview]
# Reset behavior
reset_btn.click(
fn=reset_all,
inputs=None,
outputs=[rotate_deg, move_forward, vertical_tilt, wideangle, is_reset],
queue=False
).then(fn=end_reset, inputs=None, outputs=[is_reset], queue=False)
# Manual generation
run_event = run_btn.click(fn=infer_camera_edit, inputs=inputs, outputs=outputs)
# Image upload resets
image.change(
fn=reset_all,
inputs=None,
outputs=[rotate_deg, move_forward, vertical_tilt, wideangle, is_reset],
queue=False
).then(fn=end_reset, inputs=None, outputs=[is_reset], queue=False)
# Live updates
def maybe_infer(is_reset, *args):
if is_reset:
return gr.update(), gr.update(), gr.update()
else:
return infer_camera_edit(*args)
control_inputs = [
image, prev_output, rotate_deg, move_forward,
vertical_tilt, wideangle,
seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width
]
control_inputs_with_flag = [is_reset] + control_inputs
for control in [rotate_deg, move_forward, vertical_tilt, wideangle]:
control.change(fn=maybe_infer, inputs=control_inputs_with_flag, outputs=outputs, show_progress="minimal")
run_event.then(lambda img, *_: img, inputs=[result], outputs=[prev_output])
demo.launch() |