File size: 8,664 Bytes
71f5363
7d4ee71
 
 
 
71f5363
7d4ee71
6571814
 
 
 
 
 
ec6ec95
fe9c804
 
71f5363
7d4ee71
63c5b22
 
 
695bf10
7d4ee71
 
 
 
 
a2cff3a
 
 
 
 
 
 
9fb37c1
 
a2cff3a
79640f8
028ba65
 
 
 
 
 
 
a2cff3a
 
 
028ba65
6571814
 
 
a2cff3a
6571814
028ba65
7d4ee71
 
028ba65
79640f8
a2cff3a
79640f8
 
 
028ba65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79640f8
028ba65
79640f8
 
028ba65
79640f8
 
028ba65
79640f8
 
 
 
 
028ba65
79640f8
 
 
 
 
 
 
7d4ee71
028ba65
79640f8
 
7d4ee71
 
 
79640f8
028ba65
7d4ee71
79640f8
 
 
 
 
 
 
 
 
 
 
 
 
7d4ee71
79640f8
 
7d4ee71
 
 
79640f8
 
 
 
 
 
028ba65
 
 
 
 
 
 
 
 
 
 
7d4ee71
 
 
79640f8
028ba65
 
 
79640f8
7d4ee71
 
79640f8
 
028ba65
79640f8
028ba65
 
 
 
79640f8
028ba65
 
79640f8
fee7cbb
79640f8
 
 
 
 
 
cc842fe
028ba65
 
841fa13
79640f8
 
028ba65
 
79640f8
 
028ba65
 
79640f8
 
 
 
028ba65
79640f8
 
 
028ba65
79640f8
028ba65
b001fe7
028ba65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d4ee71
028ba65
 
79640f8
028ba65
695bf10
028ba65
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import gradio as gr
import numpy as np
import random
import torch
import spaces

from PIL import Image
from diffusers import FlowMatchEulerDiscreteScheduler
from optimization import optimize_pipeline_
from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline
from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3

import math
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file

import os
from PIL import Image
import os
import gradio as gr


# --- Model Loading ---
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"

pipe = QwenImageEditPlusPipeline.from_pretrained("Qwen/Qwen-Image-Edit-2509", 
                                                transformer= QwenImageTransformer2DModel.from_pretrained("linoyts/Qwen-Image-Edit-Rapid-AIO", 
                                                                                                         subfolder='transformer',
                                                                                                         torch_dtype=dtype,
                                                                                                         device_map='cuda'),torch_dtype=dtype).to(device)

pipe.load_lora_weights(
        "dx8152/Qwen-Edit-2509-Multiple-angles", 
        weight_name="镜头转换.safetensors", adapter_name="angles"
    )

# pipe.load_lora_weights(
#         "lovis93/next-scene-qwen-image-lora-2509", 
#         weight_name="next-scene_lora-v2-3000.safetensors", adapter_name="next-scene"
#     )
pipe.set_adapters(["angles"], adapter_weights=[1.])
pipe.fuse_lora(adapter_names=["angles"], lora_scale=1.25)
# pipe.fuse_lora(adapter_names=["next-scene"], lora_scale=1.)
pipe.unload_lora_weights()



pipe.transformer.__class__ = QwenImageTransformer2DModel
pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())

optimize_pipeline_(pipe, image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))], prompt="prompt")


MAX_SEED = np.iinfo(np.int32).max

def build_camera_prompt(rotate_deg, move_forward, vertical_tilt, wideangle):
    prompt_parts = []

    # Rotation
    if rotate_deg != 0:
        direction = "left" if rotate_deg > 0 else "right"
        if direction == "left":
            prompt_parts.append(f"将镜头向左旋转{abs(rotate_deg)}度 Rotate the camera {abs(rotate_deg)} degrees to the left.")
        else:
            prompt_parts.append(f"将镜头向右旋转{abs(rotate_deg)}度 Rotate the camera {abs(rotate_deg)} degrees to the right.")


    # Move forward / close-up
    if move_forward >= 5:
        prompt_parts.append("将镜头转为特写镜头 Turn the camera to a close-up.")
    elif move_forward >= 1:
        prompt_parts.append("将镜头向前移动 Move the camera forward.")

    # Vertical tilt
    if vertical_tilt <= -1:
        prompt_parts.append("将相机转向鸟瞰视角 Turn the camera to a bird's-eye view.")
    elif vertical_tilt >= 1:
        prompt_parts.append("将相机切换到仰视视角 Turn the camera to a worm's-eye view.")

    # Lens option
    if wideangle:
        prompt_parts.append(" 将镜头转为广角镜头 Turn the camera to a wide-angle lens.")

    final_prompt = " ".join(prompt_parts).strip()
    return final_prompt if final_prompt else ""


@spaces.GPU
def infer_camera_edit(
    image,
    prev_output,
    rotate_deg,
    move_forward,
    vertical_tilt,
    wideangle,
    seed,
    randomize_seed,
    true_guidance_scale,
    num_inference_steps,
    height,
    width,
):
    prompt = build_camera_prompt(rotate_deg, move_forward, vertical_tilt, wideangle)
    print(f"Generated Prompt: {prompt}")

    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator(device=device).manual_seed(seed)

    # Choose input image (prefer uploaded, else last output)
    pil_images = []
    if image is not None:
        if isinstance(image, Image.Image):
            pil_images.append(image.convert("RGB"))
        elif hasattr(image, "name"):
            pil_images.append(Image.open(image.name).convert("RGB"))
    elif prev_output is not None:
        pil_images.append(prev_output.convert("RGB"))

    if len(pil_images) == 0:
        raise gr.Error("Please upload an image first.")

    result = pipe(
        image=pil_images,
        prompt=prompt,
        height=height if height != 0 else None,
        width=width if width != 0 else None,
        num_inference_steps=num_inference_steps,
        generator=generator,
        true_cfg_scale=true_guidance_scale,
        num_images_per_prompt=1,
    ).images[0]

    return result, seed, prompt


# --- UI ---
css = "#col-container { max-width: 800px; margin: 0 auto; }"

is_reset = gr.State(value=False)

def reset_all():
    return [0, 0, 0, 0, False, True]

def end_reset():
    return False


with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("## 🎬 Qwen Image Edit — Camera Angle Control")
        gr.Markdown(
            ""
        )

        with gr.Row():
            with gr.Column():
                image = gr.Image(label="Input Image", type="pil", sources=["upload"])
                prev_output = gr.State(value=None)
                is_reset = gr.State(value=False)

                with gr.Group():
                    rotate_deg = gr.Slider(label="Rotate Left–Right (°)", minimum=-90, maximum=90, step=45, value=0)
                    move_forward = gr.Slider(label="Move Forward → Close-Up", minimum=0, maximum=10, step=5, value=0)
                    vertical_tilt = gr.Slider(label="Vertical Angle (Bird ↔ Worm)", minimum=-1, maximum=1, step=1, value=0)
                    wideangle = gr.Checkbox(label="Wide-Angle Lens", value=False)
                    with gr.Row():
                        reset_btn = gr.Button("reset settings")

                with gr.Accordion("Advanced Settings", open=False):
                    seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
                    randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
                    true_guidance_scale = gr.Slider(label="True Guidance Scale", minimum=1.0, maximum=10.0, step=0.1, value=1.0)
                    num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=40, step=1, value=4)
                    height = gr.Slider(label="Height", minimum=256, maximum=2048, step=8, value=1024)
                    width = gr.Slider(label="Width", minimum=256, maximum=2048, step=8, value=1024)

                
                    run_btn = gr.Button("Generate", variant="primary", visible=False)

            with gr.Column():
                result = gr.Image(label="Output Image")
                prompt_preview = gr.Textbox(label="Processed Prompt", interactive=False)
                #gr.Markdown("_Each change applies a fresh camera instruction to the last output image._")

    inputs = [
        image, prev_output, rotate_deg, move_forward,
        vertical_tilt, wideangle,
        seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width
    ]
    outputs = [result, seed, prompt_preview]

    # Reset behavior
    reset_btn.click(
        fn=reset_all,
        inputs=None,
        outputs=[rotate_deg, move_forward, vertical_tilt, wideangle, is_reset],
        queue=False
    ).then(fn=end_reset, inputs=None, outputs=[is_reset], queue=False)

    # Manual generation
    run_event = run_btn.click(fn=infer_camera_edit, inputs=inputs, outputs=outputs)

    # Image upload resets
    image.change(
        fn=reset_all,
        inputs=None,
        outputs=[rotate_deg, move_forward, vertical_tilt, wideangle, is_reset],
        queue=False
    ).then(fn=end_reset, inputs=None, outputs=[is_reset], queue=False)

    # Live updates
    def maybe_infer(is_reset, *args):
        if is_reset:
            return gr.update(), gr.update(), gr.update()
        else:
            return infer_camera_edit(*args)

    control_inputs = [
        image, prev_output, rotate_deg, move_forward,
        vertical_tilt, wideangle,
        seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width
    ]
    control_inputs_with_flag = [is_reset] + control_inputs

    for control in [rotate_deg, move_forward, vertical_tilt, wideangle]:
        control.change(fn=maybe_infer, inputs=control_inputs_with_flag, outputs=outputs, show_progress="minimal")

    run_event.then(lambda img, *_: img, inputs=[result], outputs=[prev_output])

demo.launch()