Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import numpy as np | |
| import random | |
| import torch | |
| import spaces | |
| from PIL import Image | |
| from diffusers import FlowMatchEulerDiscreteScheduler | |
| from optimization import optimize_pipeline_ | |
| from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline | |
| from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel | |
| from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3 | |
| import math | |
| from huggingface_hub import hf_hub_download | |
| from safetensors.torch import load_file | |
| from PIL import Image | |
| import os | |
| import gradio as gr | |
| from gradio_client import Client, handle_file | |
| import tempfile | |
| # --- Model Loading --- | |
| dtype = torch.bfloat16 | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| pipe = QwenImageEditPlusPipeline.from_pretrained("Qwen/Qwen-Image-Edit-2509", | |
| transformer= QwenImageTransformer2DModel.from_pretrained("linoyts/Qwen-Image-Edit-Rapid-AIO", | |
| subfolder='transformer', | |
| torch_dtype=dtype, | |
| device_map='cuda'),torch_dtype=dtype).to(device) | |
| pipe.load_lora_weights( | |
| "dx8152/Qwen-Edit-2509-Multiple-angles", | |
| weight_name="้ๅคด่ฝฌๆข.safetensors", adapter_name="angles" | |
| ) | |
| # pipe.load_lora_weights( | |
| # "lovis93/next-scene-qwen-image-lora-2509", | |
| # weight_name="next-scene_lora-v2-3000.safetensors", adapter_name="next-scene" | |
| # ) | |
| pipe.set_adapters(["angles"], adapter_weights=[1.]) | |
| pipe.fuse_lora(adapter_names=["angles"], lora_scale=1.25) | |
| # pipe.fuse_lora(adapter_names=["next-scene"], lora_scale=1.) | |
| pipe.unload_lora_weights() | |
| pipe.transformer.__class__ = QwenImageTransformer2DModel | |
| pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3()) | |
| optimize_pipeline_(pipe, image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))], prompt="prompt") | |
| MAX_SEED = np.iinfo(np.int32).max | |
| def _generate_video_segment(input_image_path: str, output_image_path: str, prompt: str, request: gr.Request) -> str: | |
| """Generates a single video segment using the external service.""" | |
| x_ip_token = request.headers['x-ip-token'] | |
| video_client = Client("multimodalart/wan-2-2-first-last-frame", headers={"x-ip-token": x_ip_token}) | |
| result = video_client.predict( | |
| start_image_pil=handle_file(input_image_path), | |
| end_image_pil=handle_file(output_image_path), | |
| prompt=prompt, api_name="/generate_video", | |
| ) | |
| return result[0]["video"] | |
| def build_camera_prompt(rotate_deg, move_forward, vertical_tilt, wideangle): | |
| prompt_parts = [] | |
| # Rotation | |
| if rotate_deg != 0: | |
| direction = "left" if rotate_deg > 0 else "right" | |
| if direction == "left": | |
| prompt_parts.append(f"ๅฐ้ๅคดๅๅทฆๆ่ฝฌ{abs(rotate_deg)}ๅบฆ Rotate the camera {abs(rotate_deg)} degrees to the left.") | |
| else: | |
| prompt_parts.append(f"ๅฐ้ๅคดๅๅณๆ่ฝฌ{abs(rotate_deg)}ๅบฆ Rotate the camera {abs(rotate_deg)} degrees to the right.") | |
| # Move forward / close-up | |
| if move_forward > 5: | |
| prompt_parts.append("ๅฐ้ๅคด่ฝฌไธบ็นๅ้ๅคด Turn the camera to a close-up.") | |
| elif move_forward >= 1: | |
| prompt_parts.append("ๅฐ้ๅคดๅๅ็งปๅจ Move the camera forward.") | |
| # Vertical tilt | |
| if vertical_tilt <= -1: | |
| prompt_parts.append("ๅฐ็ธๆบ่ฝฌๅ้ธ็ฐ่ง่ง Turn the camera to a bird's-eye view.") | |
| elif vertical_tilt >= 1: | |
| prompt_parts.append("ๅฐ็ธๆบๅๆขๅฐไปฐ่ง่ง่ง Turn the camera to a worm's-eye view.") | |
| # Lens option | |
| if wideangle: | |
| prompt_parts.append(" ๅฐ้ๅคด่ฝฌไธบๅนฟ่ง้ๅคด Turn the camera to a wide-angle lens.") | |
| final_prompt = " ".join(prompt_parts).strip() | |
| return final_prompt if final_prompt else "no camera movement" | |
| def infer_camera_edit( | |
| image, | |
| rotate_deg, | |
| move_forward, | |
| vertical_tilt, | |
| wideangle, | |
| seed, | |
| randomize_seed, | |
| true_guidance_scale, | |
| num_inference_steps, | |
| height, | |
| width, | |
| prev_output = None, | |
| progress=gr.Progress(track_tqdm=True) | |
| ): | |
| prompt = build_camera_prompt(rotate_deg, move_forward, vertical_tilt, wideangle) | |
| print(f"Generated Prompt: {prompt}") | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| # Choose input image (prefer uploaded, else last output) | |
| pil_images = [] | |
| if image is not None: | |
| if isinstance(image, Image.Image): | |
| pil_images.append(image.convert("RGB")) | |
| elif hasattr(image, "name"): | |
| pil_images.append(Image.open(image.name).convert("RGB")) | |
| elif prev_output: | |
| pil_images.append(prev_output.convert("RGB")) | |
| if len(pil_images) == 0: | |
| raise gr.Error("๋จผ์ ์ด๋ฏธ์ง๋ฅผ ์ ๋ก๋ํด์ฃผ์ธ์.") | |
| if prompt == "no camera movement": | |
| return image, seed, prompt | |
| result = pipe( | |
| image=pil_images, | |
| prompt=prompt, | |
| height=height if height != 0 else None, | |
| width=width if width != 0 else None, | |
| num_inference_steps=num_inference_steps, | |
| generator=generator, | |
| true_cfg_scale=true_guidance_scale, | |
| num_images_per_prompt=1, | |
| ).images[0] | |
| return result, seed, prompt | |
| def create_video_between_images(input_image, output_image, prompt: str, request: gr.Request) -> str: | |
| """Create a video between the input and output images.""" | |
| if input_image is None or output_image is None: | |
| raise gr.Error("๋น๋์ค ์์ฑ์ ์ํด ์ ๋ ฅ ๋ฐ ์ถ๋ ฅ ์ด๋ฏธ์ง๊ฐ ๋ชจ๋ ํ์ํฉ๋๋ค.") | |
| try: | |
| with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp: | |
| input_image.save(tmp.name) | |
| input_image_path = tmp.name | |
| output_pil = Image.fromarray(output_image.astype('uint8')) | |
| with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp: | |
| output_pil.save(tmp.name) | |
| output_image_path = tmp.name | |
| video_path = _generate_video_segment( | |
| input_image_path, | |
| output_image_path, | |
| prompt if prompt else "์นด๋ฉ๋ผ ์์ง์ ๋ณํ", | |
| request | |
| ) | |
| return video_path | |
| except Exception as e: | |
| raise gr.Error(f"๋น๋์ค ์์ฑ ์คํจ: {e}") | |
| # --- UI --- | |
| css = '''#col-container { max-width: 800px; margin: 0 auto; } | |
| .dark .progress-text{color: white !important} | |
| #examples{max-width: 800px; margin: 0 auto; }''' | |
| def reset_all(): | |
| return [0, 0, 0, 0, False, True] | |
| def end_reset(): | |
| return False | |
| def update_dimensions_on_upload(image): | |
| if image is None: | |
| return 1024, 1024 | |
| original_width, original_height = image.size | |
| if original_width > original_height: | |
| new_width = 1024 | |
| aspect_ratio = original_height / original_width | |
| new_height = int(new_width * aspect_ratio) | |
| else: | |
| new_height = 1024 | |
| aspect_ratio = original_width / original_height | |
| new_width = int(new_height * aspect_ratio) | |
| # Ensure dimensions are multiples of 8 | |
| new_width = (new_width // 8) * 8 | |
| new_height = (new_height // 8) * 8 | |
| return new_width, new_height | |
| with gr.Blocks(theme=gr.themes.Citrus(), css=css) as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown("## ๐ฌ Qwen Image Edit โ ์นด๋ฉ๋ผ ์ต๊ธ ์ปจํธ๋กค") | |
| gr.Markdown(""" | |
| ์นด๋ฉ๋ผ ์ปจํธ๋กค์ ์ํ Qwen Image Edit 2509 โจ | |
| 4๋จ๊ณ ์ถ๋ก ์ ์ํ [dx8152's Qwen-Edit-2509-Multiple-angles LoRA](https://huggingface.co/dx8152/Qwen-Edit-2509-Multiple-angles)์ [Phr00t/Qwen-Image-Edit-Rapid-AIO](https://huggingface.co/Phr00t/Qwen-Image-Edit-Rapid-AIO/tree/main) ์ฌ์ฉ ๐จ | |
| """ | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| image = gr.Image(label="์ ๋ ฅ ์ด๋ฏธ์ง", type="pil") | |
| prev_output = gr.Image(value=None, visible=False) | |
| is_reset = gr.Checkbox(value=False, visible=False) | |
| with gr.Tab("์นด๋ฉ๋ผ ์ปจํธ๋กค"): | |
| rotate_deg = gr.Slider(label="์ข์ฐ ํ์ (๊ฐ๋ ยฐ)", minimum=-90, maximum=90, step=45, value=0) | |
| move_forward = gr.Slider(label="์ ์ง โ ํด๋ก์ฆ์ ", minimum=0, maximum=10, step=5, value=0) | |
| vertical_tilt = gr.Slider(label="์์ง ์ต๊ธ (์กฐ๊ฐ โ ์๊ฐ)", minimum=-1, maximum=1, step=1, value=0) | |
| wideangle = gr.Checkbox(label="๊ด๊ฐ ๋ ์ฆ", value=False) | |
| with gr.Row(): | |
| reset_btn = gr.Button("์ด๊ธฐํ") | |
| run_btn = gr.Button("์์ฑ", variant="primary") | |
| with gr.Accordion("๊ณ ๊ธ ์ค์ ", open=False): | |
| seed = gr.Slider(label="์๋", minimum=0, maximum=MAX_SEED, step=1, value=0) | |
| randomize_seed = gr.Checkbox(label="๋๋ค ์๋", value=True) | |
| true_guidance_scale = gr.Slider(label="๊ฐ์ด๋์ค ์ค์ผ์ผ", minimum=1.0, maximum=10.0, step=0.1, value=1.0) | |
| num_inference_steps = gr.Slider(label="์ถ๋ก ๋จ๊ณ", minimum=1, maximum=40, step=1, value=4) | |
| height = gr.Slider(label="๋์ด", minimum=256, maximum=2048, step=8, value=1024) | |
| width = gr.Slider(label="๋๋น", minimum=256, maximum=2048, step=8, value=1024) | |
| with gr.Column(): | |
| result = gr.Image(label="์ถ๋ ฅ ์ด๋ฏธ์ง", interactive=False) | |
| prompt_preview = gr.Textbox(label="์ฒ๋ฆฌ๋ ํ๋กฌํํธ", interactive=False) | |
| create_video_button = gr.Button("๐ฅ ์ด๋ฏธ์ง ๊ฐ ๋น๋์ค ์์ฑ", variant="secondary", visible=False) | |
| with gr.Group(visible=False) as video_group: | |
| video_output = gr.Video(label="์์ฑ๋ ๋น๋์ค", show_download_button=True, autoplay=True) | |
| inputs = [ | |
| image,rotate_deg, move_forward, | |
| vertical_tilt, wideangle, | |
| seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width, prev_output | |
| ] | |
| outputs = [result, seed, prompt_preview] | |
| # Reset behavior | |
| reset_btn.click( | |
| fn=reset_all, | |
| inputs=None, | |
| outputs=[rotate_deg, move_forward, vertical_tilt, wideangle, is_reset], | |
| queue=False | |
| ).then(fn=end_reset, inputs=None, outputs=[is_reset], queue=False) | |
| # Manual generation with video button visibility control | |
| def infer_and_show_video_button(*args): | |
| result_img, result_seed, result_prompt = infer_camera_edit(*args) | |
| # Show video button if we have both input and output images | |
| show_button = args[0] is not None and result_img is not None | |
| return result_img, result_seed, result_prompt, gr.update(visible=show_button) | |
| run_event = run_btn.click( | |
| fn=infer_and_show_video_button, | |
| inputs=inputs, | |
| outputs=outputs + [create_video_button] | |
| ) | |
| # Video creation | |
| create_video_button.click( | |
| fn=lambda: gr.update(visible=True), | |
| outputs=[video_group], | |
| api_name=False | |
| ).then( | |
| fn=create_video_between_images, | |
| inputs=[image, result, prompt_preview], | |
| outputs=[video_output], | |
| api_name=False | |
| ) | |
| # Examples | |
| gr.Examples( | |
| examples=[ | |
| ["american_gothic.jpg", 0, 0, 0, False, 0, True, 1.0, 4, 1024, 768], | |
| ["tool_of_the_sea.png", 90, 0, 0, False, 0, True, 1.0, 4, 568, 1024], | |
| ["monkey.jpg", -90, 0, 0, False, 0, True, 1.0, 4, 704, 1024], | |
| ["metropolis.jpg", 0, 0, -1, False, 0, True, 1.0, 4, 816, 1024], | |
| ["disaster_girl.jpg", -45, 0, 1, False, 0, True, 1.0, 4, 768, 1024], | |
| ["grumpy.png", 90, 0, 1, False, 0, True, 1.0, 4, 576, 1024] | |
| ], | |
| inputs=[image,rotate_deg, move_forward, | |
| vertical_tilt, wideangle, | |
| seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width], | |
| outputs=outputs, | |
| fn=infer_camera_edit, | |
| cache_examples="lazy", | |
| elem_id="examples" | |
| ) | |
| # Image upload triggers dimension update and control reset | |
| image.upload( | |
| fn=update_dimensions_on_upload, | |
| inputs=[image], | |
| outputs=[width, height] | |
| ).then( | |
| fn=reset_all, | |
| inputs=None, | |
| outputs=[rotate_deg, move_forward, vertical_tilt, wideangle, is_reset], | |
| queue=False | |
| ).then( | |
| fn=end_reset, | |
| inputs=None, | |
| outputs=[is_reset], | |
| queue=False | |
| ) | |
| # Live updates | |
| def maybe_infer(is_reset, progress=gr.Progress(track_tqdm=True), *args): | |
| if is_reset: | |
| return gr.update(), gr.update(), gr.update(), gr.update() | |
| else: | |
| result_img, result_seed, result_prompt = infer_camera_edit(*args) | |
| # Show video button if we have both input and output | |
| show_button = args[0] is not None and result_img is not None | |
| return result_img, result_seed, result_prompt, gr.update(visible=show_button) | |
| control_inputs = [ | |
| image, rotate_deg, move_forward, | |
| vertical_tilt, wideangle, | |
| seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width, prev_output | |
| ] | |
| control_inputs_with_flag = [is_reset] + control_inputs | |
| for control in [rotate_deg, move_forward, vertical_tilt]: | |
| control.release(fn=maybe_infer, inputs=control_inputs_with_flag, outputs=outputs + [create_video_button]) | |
| wideangle.input(fn=maybe_infer, inputs=control_inputs_with_flag, outputs=outputs + [create_video_button]) | |
| run_event.then(lambda img, *_: img, inputs=[result], outputs=[prev_output]) | |
| demo.launch() |