tchung1970's picture
Add American Gothic image locally
a189bec
import gradio as gr
import numpy as np
import random
import torch
import spaces
from PIL import Image
from diffusers import FlowMatchEulerDiscreteScheduler
from optimization import optimize_pipeline_
from qwenimage.pipeline_qwenimage_edit_plus import QwenImageEditPlusPipeline
from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3
import math
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
from PIL import Image
import os
import gradio as gr
from gradio_client import Client, handle_file
import tempfile
# --- Model Loading ---
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = QwenImageEditPlusPipeline.from_pretrained("Qwen/Qwen-Image-Edit-2509",
transformer= QwenImageTransformer2DModel.from_pretrained("linoyts/Qwen-Image-Edit-Rapid-AIO",
subfolder='transformer',
torch_dtype=dtype,
device_map='cuda'),torch_dtype=dtype).to(device)
pipe.load_lora_weights(
"dx8152/Qwen-Edit-2509-Multiple-angles",
weight_name="้•œๅคด่ฝฌๆข.safetensors", adapter_name="angles"
)
# pipe.load_lora_weights(
# "lovis93/next-scene-qwen-image-lora-2509",
# weight_name="next-scene_lora-v2-3000.safetensors", adapter_name="next-scene"
# )
pipe.set_adapters(["angles"], adapter_weights=[1.])
pipe.fuse_lora(adapter_names=["angles"], lora_scale=1.25)
# pipe.fuse_lora(adapter_names=["next-scene"], lora_scale=1.)
pipe.unload_lora_weights()
pipe.transformer.__class__ = QwenImageTransformer2DModel
pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
optimize_pipeline_(pipe, image=[Image.new("RGB", (1024, 1024)), Image.new("RGB", (1024, 1024))], prompt="prompt")
MAX_SEED = np.iinfo(np.int32).max
def _generate_video_segment(input_image_path: str, output_image_path: str, prompt: str, request: gr.Request) -> str:
"""Generates a single video segment using the external service."""
x_ip_token = request.headers['x-ip-token']
video_client = Client("multimodalart/wan-2-2-first-last-frame", headers={"x-ip-token": x_ip_token})
result = video_client.predict(
start_image_pil=handle_file(input_image_path),
end_image_pil=handle_file(output_image_path),
prompt=prompt, api_name="/generate_video",
)
return result[0]["video"]
def build_camera_prompt(rotate_deg, move_forward, vertical_tilt, wideangle):
prompt_parts = []
# Rotation
if rotate_deg != 0:
direction = "left" if rotate_deg > 0 else "right"
if direction == "left":
prompt_parts.append(f"ๅฐ†้•œๅคดๅ‘ๅทฆๆ—‹่ฝฌ{abs(rotate_deg)}ๅบฆ Rotate the camera {abs(rotate_deg)} degrees to the left.")
else:
prompt_parts.append(f"ๅฐ†้•œๅคดๅ‘ๅณๆ—‹่ฝฌ{abs(rotate_deg)}ๅบฆ Rotate the camera {abs(rotate_deg)} degrees to the right.")
# Move forward / close-up
if move_forward > 5:
prompt_parts.append("ๅฐ†้•œๅคด่ฝฌไธบ็‰นๅ†™้•œๅคด Turn the camera to a close-up.")
elif move_forward >= 1:
prompt_parts.append("ๅฐ†้•œๅคดๅ‘ๅ‰็งปๅŠจ Move the camera forward.")
# Vertical tilt
if vertical_tilt <= -1:
prompt_parts.append("ๅฐ†็›ธๆœบ่ฝฌๅ‘้ธŸ็žฐ่ง†่ง’ Turn the camera to a bird's-eye view.")
elif vertical_tilt >= 1:
prompt_parts.append("ๅฐ†็›ธๆœบๅˆ‡ๆขๅˆฐไปฐ่ง†่ง†่ง’ Turn the camera to a worm's-eye view.")
# Lens option
if wideangle:
prompt_parts.append(" ๅฐ†้•œๅคด่ฝฌไธบๅนฟ่ง’้•œๅคด Turn the camera to a wide-angle lens.")
final_prompt = " ".join(prompt_parts).strip()
return final_prompt if final_prompt else "no camera movement"
@spaces.GPU
def infer_camera_edit(
image,
rotate_deg,
move_forward,
vertical_tilt,
wideangle,
seed,
randomize_seed,
true_guidance_scale,
num_inference_steps,
height,
width,
prev_output = None,
progress=gr.Progress(track_tqdm=True)
):
prompt = build_camera_prompt(rotate_deg, move_forward, vertical_tilt, wideangle)
print(f"Generated Prompt: {prompt}")
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
# Choose input image (prefer uploaded, else last output)
pil_images = []
if image is not None:
if isinstance(image, Image.Image):
pil_images.append(image.convert("RGB"))
elif hasattr(image, "name"):
pil_images.append(Image.open(image.name).convert("RGB"))
elif prev_output:
pil_images.append(prev_output.convert("RGB"))
if len(pil_images) == 0:
raise gr.Error("๋จผ์ € ์ด๋ฏธ์ง€๋ฅผ ์—…๋กœ๋“œํ•ด์ฃผ์„ธ์š”.")
if prompt == "no camera movement":
return image, seed, prompt
result = pipe(
image=pil_images,
prompt=prompt,
height=height if height != 0 else None,
width=width if width != 0 else None,
num_inference_steps=num_inference_steps,
generator=generator,
true_cfg_scale=true_guidance_scale,
num_images_per_prompt=1,
).images[0]
return result, seed, prompt
def create_video_between_images(input_image, output_image, prompt: str, request: gr.Request) -> str:
"""Create a video between the input and output images."""
if input_image is None or output_image is None:
raise gr.Error("๋น„๋””์˜ค ์ƒ์„ฑ์„ ์œ„ํ•ด ์ž…๋ ฅ ๋ฐ ์ถœ๋ ฅ ์ด๋ฏธ์ง€๊ฐ€ ๋ชจ๋‘ ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค.")
try:
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp:
input_image.save(tmp.name)
input_image_path = tmp.name
output_pil = Image.fromarray(output_image.astype('uint8'))
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as tmp:
output_pil.save(tmp.name)
output_image_path = tmp.name
video_path = _generate_video_segment(
input_image_path,
output_image_path,
prompt if prompt else "์นด๋ฉ”๋ผ ์›€์ง์ž„ ๋ณ€ํ™˜",
request
)
return video_path
except Exception as e:
raise gr.Error(f"๋น„๋””์˜ค ์ƒ์„ฑ ์‹คํŒจ: {e}")
# --- UI ---
css = '''#col-container { max-width: 800px; margin: 0 auto; }
.dark .progress-text{color: white !important}
#examples{max-width: 800px; margin: 0 auto; }'''
def reset_all():
return [0, 0, 0, 0, False, True]
def end_reset():
return False
def update_dimensions_on_upload(image):
if image is None:
return 1024, 1024
original_width, original_height = image.size
if original_width > original_height:
new_width = 1024
aspect_ratio = original_height / original_width
new_height = int(new_width * aspect_ratio)
else:
new_height = 1024
aspect_ratio = original_width / original_height
new_width = int(new_height * aspect_ratio)
# Ensure dimensions are multiples of 8
new_width = (new_width // 8) * 8
new_height = (new_height // 8) * 8
return new_width, new_height
with gr.Blocks(theme=gr.themes.Citrus(), css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("## ๐ŸŽฌ Qwen Image Edit โ€” ์นด๋ฉ”๋ผ ์•ต๊ธ€ ์ปจํŠธ๋กค")
gr.Markdown("""
์นด๋ฉ”๋ผ ์ปจํŠธ๋กค์„ ์œ„ํ•œ Qwen Image Edit 2509 โœจ
4๋‹จ๊ณ„ ์ถ”๋ก ์„ ์œ„ํ•œ [dx8152's Qwen-Edit-2509-Multiple-angles LoRA](https://huggingface.co/dx8152/Qwen-Edit-2509-Multiple-angles)์™€ [Phr00t/Qwen-Image-Edit-Rapid-AIO](https://huggingface.co/Phr00t/Qwen-Image-Edit-Rapid-AIO/tree/main) ์‚ฌ์šฉ ๐Ÿ’จ
"""
)
with gr.Row():
with gr.Column():
image = gr.Image(label="์ž…๋ ฅ ์ด๋ฏธ์ง€", type="pil")
prev_output = gr.Image(value=None, visible=False)
is_reset = gr.Checkbox(value=False, visible=False)
with gr.Tab("์นด๋ฉ”๋ผ ์ปจํŠธ๋กค"):
rotate_deg = gr.Slider(label="์ขŒ์šฐ ํšŒ์ „ (๊ฐ๋„ ยฐ)", minimum=-90, maximum=90, step=45, value=0)
move_forward = gr.Slider(label="์ „์ง„ โ†’ ํด๋กœ์ฆˆ์—…", minimum=0, maximum=10, step=5, value=0)
vertical_tilt = gr.Slider(label="์ˆ˜์ง ์•ต๊ธ€ (์กฐ๊ฐ โ†” ์•™๊ฐ)", minimum=-1, maximum=1, step=1, value=0)
wideangle = gr.Checkbox(label="๊ด‘๊ฐ ๋ Œ์ฆˆ", value=False)
with gr.Row():
reset_btn = gr.Button("์ดˆ๊ธฐํ™”")
run_btn = gr.Button("์ƒ์„ฑ", variant="primary")
with gr.Accordion("๊ณ ๊ธ‰ ์„ค์ •", open=False):
seed = gr.Slider(label="์‹œ๋“œ", minimum=0, maximum=MAX_SEED, step=1, value=0)
randomize_seed = gr.Checkbox(label="๋žœ๋ค ์‹œ๋“œ", value=True)
true_guidance_scale = gr.Slider(label="๊ฐ€์ด๋˜์Šค ์Šค์ผ€์ผ", minimum=1.0, maximum=10.0, step=0.1, value=1.0)
num_inference_steps = gr.Slider(label="์ถ”๋ก  ๋‹จ๊ณ„", minimum=1, maximum=40, step=1, value=4)
height = gr.Slider(label="๋†’์ด", minimum=256, maximum=2048, step=8, value=1024)
width = gr.Slider(label="๋„ˆ๋น„", minimum=256, maximum=2048, step=8, value=1024)
with gr.Column():
result = gr.Image(label="์ถœ๋ ฅ ์ด๋ฏธ์ง€", interactive=False)
prompt_preview = gr.Textbox(label="์ฒ˜๋ฆฌ๋œ ํ”„๋กฌํ”„ํŠธ", interactive=False)
create_video_button = gr.Button("๐ŸŽฅ ์ด๋ฏธ์ง€ ๊ฐ„ ๋น„๋””์˜ค ์ƒ์„ฑ", variant="secondary", visible=False)
with gr.Group(visible=False) as video_group:
video_output = gr.Video(label="์ƒ์„ฑ๋œ ๋น„๋””์˜ค", show_download_button=True, autoplay=True)
inputs = [
image,rotate_deg, move_forward,
vertical_tilt, wideangle,
seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width, prev_output
]
outputs = [result, seed, prompt_preview]
# Reset behavior
reset_btn.click(
fn=reset_all,
inputs=None,
outputs=[rotate_deg, move_forward, vertical_tilt, wideangle, is_reset],
queue=False
).then(fn=end_reset, inputs=None, outputs=[is_reset], queue=False)
# Manual generation with video button visibility control
def infer_and_show_video_button(*args):
result_img, result_seed, result_prompt = infer_camera_edit(*args)
# Show video button if we have both input and output images
show_button = args[0] is not None and result_img is not None
return result_img, result_seed, result_prompt, gr.update(visible=show_button)
run_event = run_btn.click(
fn=infer_and_show_video_button,
inputs=inputs,
outputs=outputs + [create_video_button]
)
# Video creation
create_video_button.click(
fn=lambda: gr.update(visible=True),
outputs=[video_group],
api_name=False
).then(
fn=create_video_between_images,
inputs=[image, result, prompt_preview],
outputs=[video_output],
api_name=False
)
# Examples
gr.Examples(
examples=[
["american_gothic.jpg", 0, 0, 0, False, 0, True, 1.0, 4, 1024, 768],
["tool_of_the_sea.png", 90, 0, 0, False, 0, True, 1.0, 4, 568, 1024],
["monkey.jpg", -90, 0, 0, False, 0, True, 1.0, 4, 704, 1024],
["metropolis.jpg", 0, 0, -1, False, 0, True, 1.0, 4, 816, 1024],
["disaster_girl.jpg", -45, 0, 1, False, 0, True, 1.0, 4, 768, 1024],
["grumpy.png", 90, 0, 1, False, 0, True, 1.0, 4, 576, 1024]
],
inputs=[image,rotate_deg, move_forward,
vertical_tilt, wideangle,
seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width],
outputs=outputs,
fn=infer_camera_edit,
cache_examples="lazy",
elem_id="examples"
)
# Image upload triggers dimension update and control reset
image.upload(
fn=update_dimensions_on_upload,
inputs=[image],
outputs=[width, height]
).then(
fn=reset_all,
inputs=None,
outputs=[rotate_deg, move_forward, vertical_tilt, wideangle, is_reset],
queue=False
).then(
fn=end_reset,
inputs=None,
outputs=[is_reset],
queue=False
)
# Live updates
def maybe_infer(is_reset, progress=gr.Progress(track_tqdm=True), *args):
if is_reset:
return gr.update(), gr.update(), gr.update(), gr.update()
else:
result_img, result_seed, result_prompt = infer_camera_edit(*args)
# Show video button if we have both input and output
show_button = args[0] is not None and result_img is not None
return result_img, result_seed, result_prompt, gr.update(visible=show_button)
control_inputs = [
image, rotate_deg, move_forward,
vertical_tilt, wideangle,
seed, randomize_seed, true_guidance_scale, num_inference_steps, height, width, prev_output
]
control_inputs_with_flag = [is_reset] + control_inputs
for control in [rotate_deg, move_forward, vertical_tilt]:
control.release(fn=maybe_infer, inputs=control_inputs_with_flag, outputs=outputs + [create_video_button])
wideangle.input(fn=maybe_infer, inputs=control_inputs_with_flag, outputs=outputs + [create_video_button])
run_event.then(lambda img, *_: img, inputs=[result], outputs=[prev_output])
demo.launch()