linoyts HF Staff commited on
Commit
fe9c804
·
verified ·
1 Parent(s): b36bbcf

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +42 -29
app.py CHANGED
@@ -13,6 +13,8 @@ from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3
13
 
14
  from huggingface_hub import InferenceClient
15
  import math
 
 
16
 
17
  import os
18
  import base64
@@ -168,35 +170,46 @@ dtype = torch.bfloat16
168
  device = "cuda" if torch.cuda.is_available() else "cpu"
169
 
170
  # Scheduler configuration for Lightning
171
- scheduler_config = {
172
- "base_image_seq_len": 256,
173
- "base_shift": math.log(3),
174
- "invert_sigmas": False,
175
- "max_image_seq_len": 8192,
176
- "max_shift": math.log(3),
177
- "num_train_timesteps": 1000,
178
- "shift": 1.0,
179
- "shift_terminal": None,
180
- "stochastic_sampling": False,
181
- "time_shift_type": "exponential",
182
- "use_beta_sigmas": False,
183
- "use_dynamic_shifting": True,
184
- "use_exponential_sigmas": False,
185
- "use_karras_sigmas": False,
186
- }
187
-
188
- # Initialize scheduler with Lightning config
189
- scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config)
190
-
191
- # Load the model pipeline
 
 
 
 
 
 
 
 
192
  pipe = QwenImageEditPlusPipeline.from_pretrained("Qwen/Qwen-Image-Edit-2509",
193
- scheduler=scheduler,
194
  torch_dtype=dtype).to(device)
195
- pipe.load_lora_weights(
196
- "lightx2v/Qwen-Image-Lightning",
197
- weight_name="Qwen-Image-Edit-2509/Qwen-Image-Edit-2509-Lightning-8steps-V1.0-bf16.safetensors"
198
- )
199
- pipe.fuse_lora()
 
 
 
200
 
201
  # Apply the same optimizations from the first version
202
  pipe.transformer.__class__ = QwenImageTransformer2DModel
@@ -222,7 +235,7 @@ def infer(
222
  seed=42,
223
  randomize_seed=False,
224
  true_guidance_scale=1.0,
225
- num_inference_steps=8,
226
  height=None,
227
  width=None,
228
  rewrite_prompt=True,
@@ -360,7 +373,7 @@ with gr.Blocks(css=css) as demo:
360
  minimum=1,
361
  maximum=40,
362
  step=1,
363
- value=8,
364
  )
365
 
366
  height = gr.Slider(
 
13
 
14
  from huggingface_hub import InferenceClient
15
  import math
16
+ from huggingface_hub import hf_hub_download
17
+ from safetensors.torch import load_file
18
 
19
  import os
20
  import base64
 
170
  device = "cuda" if torch.cuda.is_available() else "cpu"
171
 
172
  # Scheduler configuration for Lightning
173
+ # scheduler_config = {
174
+ # "base_image_seq_len": 256,
175
+ # "base_shift": math.log(3),
176
+ # "invert_sigmas": False,
177
+ # "max_image_seq_len": 8192,
178
+ # "max_shift": math.log(3),
179
+ # "num_train_timesteps": 1000,
180
+ # "shift": 1.0,
181
+ # "shift_terminal": None,
182
+ # "stochastic_sampling": False,
183
+ # "time_shift_type": "exponential",
184
+ # "use_beta_sigmas": False,
185
+ # "use_dynamic_shifting": True,
186
+ # "use_exponential_sigmas": False,
187
+ # "use_karras_sigmas": False,
188
+ # }
189
+
190
+ # # Initialize scheduler with Lightning config
191
+ # scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config)
192
+
193
+ # # Load the model pipeline
194
+ # pipe = QwenImageEditPlusPipeline.from_pretrained("Qwen/Qwen-Image-Edit-2509",
195
+ # scheduler=scheduler,
196
+ # torch_dtype=dtype).to(device)
197
+ # pipe.load_lora_weights(
198
+ # "lightx2v/Qwen-Image-Lightning",
199
+ # weight_name="Qwen-Image-Edit-2509/Qwen-Image-Edit-2509-Lightning-8steps-V1.0-bf16.safetensors"
200
+ # )
201
+ # pipe.fuse_lora()
202
  pipe = QwenImageEditPlusPipeline.from_pretrained("Qwen/Qwen-Image-Edit-2509",
203
+ # scheduler=scheduler,
204
  torch_dtype=dtype).to(device)
205
+ weights_path = hf_hub_download(
206
+ repo_id="linoyts/Qwen-Image-Edit-Rapid-AIO",
207
+ filename="transformer/transformer_weights.safetensors",
208
+ repo_type="model"
209
+ )
210
+ state_dict = load_file(weights_path)
211
+
212
+ pipe.transformer.load_state_dict(state_dict, strict=False)
213
 
214
  # Apply the same optimizations from the first version
215
  pipe.transformer.__class__ = QwenImageTransformer2DModel
 
235
  seed=42,
236
  randomize_seed=False,
237
  true_guidance_scale=1.0,
238
+ num_inference_steps=4,
239
  height=None,
240
  width=None,
241
  rewrite_prompt=True,
 
373
  minimum=1,
374
  maximum=40,
375
  step=1,
376
+ value=4,
377
  )
378
 
379
  height = gr.Slider(