Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,5 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import discord
|
| 2 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
DISCORD_TOKEN = os.environ.get("discord_key")
|
| 5 |
|
|
@@ -23,8 +119,8 @@ async def on_message(message):
|
|
| 23 |
return
|
| 24 |
|
| 25 |
# Respond with "pong" if the message contains "ping"
|
| 26 |
-
|
| 27 |
-
|
| 28 |
|
| 29 |
# Run the bot with your token
|
| 30 |
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import hashlib
|
| 3 |
+
import os
|
| 4 |
+
import requests
|
| 5 |
+
import time
|
| 6 |
+
from langsmith import traceable
|
| 7 |
+
import random
|
| 8 |
import discord
|
| 9 |
import os
|
| 10 |
+
from transformers import pipeline
|
| 11 |
+
import torch
|
| 12 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 13 |
+
import numpy as np
|
| 14 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 15 |
+
from pydantic import BaseModel
|
| 16 |
+
from typing import List, Optional
|
| 17 |
+
from tqdm import tqdm
|
| 18 |
+
import re
|
| 19 |
+
import os
|
| 20 |
+
|
| 21 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 22 |
+
|
| 23 |
+
st.set_page_config(page_title="TeapotAI Discord Bot", page_icon=":robot_face:", layout="wide")
|
| 24 |
+
tokenizer = None
|
| 25 |
+
model = None
|
| 26 |
+
model_name = "teapotai/teapotllm"
|
| 27 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 28 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def log_time(func):
|
| 33 |
+
def wrapper(*args, **kwargs):
|
| 34 |
+
start_time = time.time()
|
| 35 |
+
result = func(*args, **kwargs)
|
| 36 |
+
end_time = time.time()
|
| 37 |
+
print(f"{func.__name__} executed in {end_time - start_time:.4f} seconds")
|
| 38 |
+
return result
|
| 39 |
+
return wrapper
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
API_KEY = os.environ.get("brave_api_key")
|
| 43 |
+
|
| 44 |
+
@log_time
|
| 45 |
+
def brave_search(query, count=3):
|
| 46 |
+
url = "https://api.search.brave.com/res/v1/web/search"
|
| 47 |
+
headers = {"Accept": "application/json", "X-Subscription-Token": API_KEY}
|
| 48 |
+
params = {"q": query, "count": count}
|
| 49 |
+
|
| 50 |
+
response = requests.get(url, headers=headers, params=params)
|
| 51 |
+
|
| 52 |
+
if response.status_code == 200:
|
| 53 |
+
results = response.json().get("web", {}).get("results", [])
|
| 54 |
+
print(results)
|
| 55 |
+
return [(res["title"], res["description"], res["url"]) for res in results]
|
| 56 |
+
else:
|
| 57 |
+
print(f"Error: {response.status_code}, {response.text}")
|
| 58 |
+
return []
|
| 59 |
+
|
| 60 |
+
@traceable
|
| 61 |
+
@log_time
|
| 62 |
+
def query_teapot(prompt, context, user_input):
|
| 63 |
+
input_text = prompt + "\n" + context + "\n" + user_input
|
| 64 |
+
|
| 65 |
+
start_time = time.time()
|
| 66 |
+
|
| 67 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
| 68 |
+
input_length = inputs["input_ids"].shape[1]
|
| 69 |
+
|
| 70 |
+
output = model.generate(**inputs, max_new_tokens=512)
|
| 71 |
+
|
| 72 |
+
output_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
| 73 |
+
total_length = output.shape[1] # Includes both input and output tokens
|
| 74 |
+
output_length = total_length - input_length # Extract output token count
|
| 75 |
+
|
| 76 |
+
end_time = time.time()
|
| 77 |
+
|
| 78 |
+
elapsed_time = end_time - start_time
|
| 79 |
+
tokens_per_second = total_length / elapsed_time if elapsed_time > 0 else float("inf")
|
| 80 |
+
|
| 81 |
+
return output_text
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
@log_time
|
| 86 |
+
def handle_chat(user_prompt, user_input):
|
| 87 |
+
|
| 88 |
+
results = brave_search(user_input)
|
| 89 |
+
|
| 90 |
+
documents = [desc.replace('<strong>','').replace('</strong>','') for _, desc, _ in results]
|
| 91 |
+
|
| 92 |
+
context = "\n".join(documents)
|
| 93 |
+
prompt = """You are Teapot, an open-source AI assistant optimized for low-end devices, providing short, accurate responses without hallucinating while excelling at information extraction and text summarization. If a user asks who you are reply "I am Teapot"."""
|
| 94 |
+
response = query_teapot(prompt, context+user_prompt, user_input)
|
| 95 |
+
|
| 96 |
+
return response
|
| 97 |
+
|
| 98 |
+
st.write("418 I'm a teapot")
|
| 99 |
|
| 100 |
DISCORD_TOKEN = os.environ.get("discord_key")
|
| 101 |
|
|
|
|
| 119 |
return
|
| 120 |
|
| 121 |
# Respond with "pong" if the message contains "ping"
|
| 122 |
+
response = handle_chat(message.content)
|
| 123 |
+
await message.channel.send(response)
|
| 124 |
|
| 125 |
# Run the bot with your token
|
| 126 |
|