Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -53,43 +53,43 @@ async def brave_search(query, count=1):
|
|
53 |
print(f"Error: {response.status}, {await response.text()}")
|
54 |
return []
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
|
61 |
-
|
62 |
|
63 |
-
|
64 |
-
|
65 |
|
66 |
-
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
|
72 |
-
|
73 |
|
74 |
-
|
75 |
-
|
76 |
|
77 |
-
|
78 |
|
79 |
|
80 |
-
pipeline_lock = asyncio.Lock()
|
81 |
|
82 |
-
@traceable
|
83 |
-
@log_time
|
84 |
-
async def query_teapot(prompt, context, user_input):
|
85 |
-
|
86 |
-
|
87 |
|
88 |
-
|
89 |
-
|
90 |
|
91 |
-
|
92 |
-
|
93 |
|
94 |
|
95 |
@log_time
|
@@ -104,6 +104,10 @@ async def handle_chat(user_input):
|
|
104 |
prompt = """You are Teapot, an open-source AI assistant optimized for low-end devices, providing short, accurate responses without hallucinating while excelling at information extraction and text summarization."""
|
105 |
generation_start_time = time.time()
|
106 |
response = await query_teapot(prompt, context, user_input)
|
|
|
|
|
|
|
|
|
107 |
generation_end_time = time.time()
|
108 |
|
109 |
debug_info = f"""
|
@@ -113,6 +117,9 @@ Prompt:
|
|
113 |
Context:
|
114 |
{context}
|
115 |
|
|
|
|
|
|
|
116 |
Search time: {search_end_time - search_start_time:.2f} seconds
|
117 |
Generation time: {generation_end_time - generation_start_time:.2f} seconds
|
118 |
Response: {response}
|
|
|
53 |
print(f"Error: {response.status}, {await response.text()}")
|
54 |
return []
|
55 |
|
56 |
+
@traceable
|
57 |
+
@log_time
|
58 |
+
def query_teapot(prompt, context, user_input):
|
59 |
+
input_text = prompt + "\n" + context + "\n" + user_input
|
60 |
|
61 |
+
start_time = time.time()
|
62 |
|
63 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
64 |
+
input_length = inputs["input_ids"].shape[1]
|
65 |
|
66 |
+
output = model.generate(**inputs, max_new_tokens=512)
|
67 |
|
68 |
+
output_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
69 |
+
total_length = output.shape[1] # Includes both input and output tokens
|
70 |
+
output_length = total_length - input_length # Extract output token count
|
71 |
|
72 |
+
end_time = time.time()
|
73 |
|
74 |
+
elapsed_time = end_time - start_time
|
75 |
+
tokens_per_second = total_length / elapsed_time if elapsed_time > 0 else float("inf")
|
76 |
|
77 |
+
return output_text
|
78 |
|
79 |
|
80 |
+
# pipeline_lock = asyncio.Lock()
|
81 |
|
82 |
+
# @traceable
|
83 |
+
# @log_time
|
84 |
+
# async def query_teapot(prompt, context, user_input):
|
85 |
+
# input_text = prompt + "\n" + context + "\n" + user_input
|
86 |
+
# inputs = tokenizer(input_text, return_tensors="pt")
|
87 |
|
88 |
+
# async with pipeline_lock: # Ensure only one call runs at a time
|
89 |
+
# output = await asyncio.to_thread(model.generate, **inputs, max_new_tokens=512)
|
90 |
|
91 |
+
# output_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
92 |
+
# return output_text
|
93 |
|
94 |
|
95 |
@log_time
|
|
|
104 |
prompt = """You are Teapot, an open-source AI assistant optimized for low-end devices, providing short, accurate responses without hallucinating while excelling at information extraction and text summarization."""
|
105 |
generation_start_time = time.time()
|
106 |
response = await query_teapot(prompt, context, user_input)
|
107 |
+
|
108 |
+
if len(results)==0:
|
109 |
+
response = "I'm sorry but I don't have any information on that."
|
110 |
+
|
111 |
generation_end_time = time.time()
|
112 |
|
113 |
debug_info = f"""
|
|
|
117 |
Context:
|
118 |
{context}
|
119 |
|
120 |
+
Query:
|
121 |
+
{user_input}
|
122 |
+
|
123 |
Search time: {search_end_time - search_start_time:.2f} seconds
|
124 |
Generation time: {generation_end_time - generation_start_time:.2f} seconds
|
125 |
Response: {response}
|