Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -53,43 +53,43 @@ async def brave_search(query, count=1):
|
|
| 53 |
print(f"Error: {response.status}, {await response.text()}")
|
| 54 |
return []
|
| 55 |
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
|
| 61 |
-
|
| 62 |
|
| 63 |
-
|
| 64 |
-
|
| 65 |
|
| 66 |
-
|
| 67 |
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
|
| 72 |
-
|
| 73 |
|
| 74 |
-
|
| 75 |
-
|
| 76 |
|
| 77 |
-
|
| 78 |
|
| 79 |
|
| 80 |
-
pipeline_lock = asyncio.Lock()
|
| 81 |
|
| 82 |
-
@traceable
|
| 83 |
-
@log_time
|
| 84 |
-
async def query_teapot(prompt, context, user_input):
|
| 85 |
-
|
| 86 |
-
|
| 87 |
|
| 88 |
-
|
| 89 |
-
|
| 90 |
|
| 91 |
-
|
| 92 |
-
|
| 93 |
|
| 94 |
|
| 95 |
@log_time
|
|
@@ -104,6 +104,10 @@ async def handle_chat(user_input):
|
|
| 104 |
prompt = """You are Teapot, an open-source AI assistant optimized for low-end devices, providing short, accurate responses without hallucinating while excelling at information extraction and text summarization."""
|
| 105 |
generation_start_time = time.time()
|
| 106 |
response = await query_teapot(prompt, context, user_input)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
generation_end_time = time.time()
|
| 108 |
|
| 109 |
debug_info = f"""
|
|
@@ -113,6 +117,9 @@ Prompt:
|
|
| 113 |
Context:
|
| 114 |
{context}
|
| 115 |
|
|
|
|
|
|
|
|
|
|
| 116 |
Search time: {search_end_time - search_start_time:.2f} seconds
|
| 117 |
Generation time: {generation_end_time - generation_start_time:.2f} seconds
|
| 118 |
Response: {response}
|
|
|
|
| 53 |
print(f"Error: {response.status}, {await response.text()}")
|
| 54 |
return []
|
| 55 |
|
| 56 |
+
@traceable
|
| 57 |
+
@log_time
|
| 58 |
+
def query_teapot(prompt, context, user_input):
|
| 59 |
+
input_text = prompt + "\n" + context + "\n" + user_input
|
| 60 |
|
| 61 |
+
start_time = time.time()
|
| 62 |
|
| 63 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
| 64 |
+
input_length = inputs["input_ids"].shape[1]
|
| 65 |
|
| 66 |
+
output = model.generate(**inputs, max_new_tokens=512)
|
| 67 |
|
| 68 |
+
output_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
| 69 |
+
total_length = output.shape[1] # Includes both input and output tokens
|
| 70 |
+
output_length = total_length - input_length # Extract output token count
|
| 71 |
|
| 72 |
+
end_time = time.time()
|
| 73 |
|
| 74 |
+
elapsed_time = end_time - start_time
|
| 75 |
+
tokens_per_second = total_length / elapsed_time if elapsed_time > 0 else float("inf")
|
| 76 |
|
| 77 |
+
return output_text
|
| 78 |
|
| 79 |
|
| 80 |
+
# pipeline_lock = asyncio.Lock()
|
| 81 |
|
| 82 |
+
# @traceable
|
| 83 |
+
# @log_time
|
| 84 |
+
# async def query_teapot(prompt, context, user_input):
|
| 85 |
+
# input_text = prompt + "\n" + context + "\n" + user_input
|
| 86 |
+
# inputs = tokenizer(input_text, return_tensors="pt")
|
| 87 |
|
| 88 |
+
# async with pipeline_lock: # Ensure only one call runs at a time
|
| 89 |
+
# output = await asyncio.to_thread(model.generate, **inputs, max_new_tokens=512)
|
| 90 |
|
| 91 |
+
# output_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
| 92 |
+
# return output_text
|
| 93 |
|
| 94 |
|
| 95 |
@log_time
|
|
|
|
| 104 |
prompt = """You are Teapot, an open-source AI assistant optimized for low-end devices, providing short, accurate responses without hallucinating while excelling at information extraction and text summarization."""
|
| 105 |
generation_start_time = time.time()
|
| 106 |
response = await query_teapot(prompt, context, user_input)
|
| 107 |
+
|
| 108 |
+
if len(results)==0:
|
| 109 |
+
response = "I'm sorry but I don't have any information on that."
|
| 110 |
+
|
| 111 |
generation_end_time = time.time()
|
| 112 |
|
| 113 |
debug_info = f"""
|
|
|
|
| 117 |
Context:
|
| 118 |
{context}
|
| 119 |
|
| 120 |
+
Query:
|
| 121 |
+
{user_input}
|
| 122 |
+
|
| 123 |
Search time: {search_end_time - search_start_time:.2f} seconds
|
| 124 |
Generation time: {generation_end_time - generation_start_time:.2f} seconds
|
| 125 |
Response: {response}
|