Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	Update app.py
Browse files
    	
        app.py
    CHANGED
    
    | @@ -1,14 +1,13 @@ | |
| 1 | 
             
            import streamlit as st
         | 
| 2 | 
             
            import hashlib
         | 
| 3 | 
             
            import os
         | 
| 4 | 
            -
            import  | 
|  | |
| 5 | 
             
            import time
         | 
| 6 | 
             
            from langsmith import traceable
         | 
| 7 | 
             
            import random
         | 
| 8 | 
             
            import discord
         | 
| 9 | 
            -
            import os
         | 
| 10 | 
             
            from transformers import pipeline
         | 
| 11 | 
            -
            import torch
         | 
| 12 | 
             
            from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
         | 
| 13 | 
             
            import numpy as np
         | 
| 14 | 
             
            from sklearn.metrics.pairwise import cosine_similarity
         | 
| @@ -18,8 +17,6 @@ from tqdm import tqdm | |
| 18 | 
             
            import re
         | 
| 19 | 
             
            import os
         | 
| 20 |  | 
| 21 | 
            -
            from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
         | 
| 22 | 
            -
             | 
| 23 | 
             
            st.set_page_config(page_title="TeapotAI Discord Bot", page_icon=":robot_face:", layout="wide")
         | 
| 24 | 
             
            tokenizer = None
         | 
| 25 | 
             
            model = None
         | 
| @@ -28,11 +25,10 @@ tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| 28 | 
             
            model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
         | 
| 29 |  | 
| 30 |  | 
| 31 | 
            -
             | 
| 32 | 
             
            def log_time(func):
         | 
| 33 | 
            -
                def wrapper(*args, **kwargs):
         | 
| 34 | 
             
                    start_time = time.time()
         | 
| 35 | 
            -
                    result = func(*args, **kwargs)
         | 
| 36 | 
             
                    end_time = time.time()
         | 
| 37 | 
             
                    print(f"{func.__name__} executed in {end_time - start_time:.4f} seconds")
         | 
| 38 | 
             
                    return result
         | 
| @@ -42,24 +38,25 @@ def log_time(func): | |
| 42 | 
             
            API_KEY = os.environ.get("brave_api_key")
         | 
| 43 |  | 
| 44 | 
             
            @log_time
         | 
| 45 | 
            -
            def brave_search(query, count=3):
         | 
| 46 | 
             
                url = "https://api.search.brave.com/res/v1/web/search"
         | 
| 47 | 
             
                headers = {"Accept": "application/json", "X-Subscription-Token": API_KEY}
         | 
| 48 | 
             
                params = {"q": query, "count": count}
         | 
| 49 | 
            -
             | 
| 50 | 
            -
                 | 
| 51 | 
            -
             | 
| 52 | 
            -
             | 
| 53 | 
            -
             | 
| 54 | 
            -
             | 
| 55 | 
            -
             | 
| 56 | 
            -
             | 
| 57 | 
            -
             | 
| 58 | 
            -
             | 
|  | |
| 59 |  | 
| 60 | 
             
            @traceable 
         | 
| 61 | 
             
            @log_time
         | 
| 62 | 
            -
            def query_teapot(prompt, context, user_input):
         | 
| 63 | 
             
                input_text = prompt + "\n" + context + "\n" + user_input
         | 
| 64 | 
             
                print(input_text)
         | 
| 65 | 
             
                start_time = time.time()
         | 
| @@ -67,7 +64,7 @@ def query_teapot(prompt, context, user_input): | |
| 67 | 
             
                inputs = tokenizer(input_text, return_tensors="pt")
         | 
| 68 | 
             
                input_length = inputs["input_ids"].shape[1]
         | 
| 69 |  | 
| 70 | 
            -
                output = model.generate | 
| 71 |  | 
| 72 | 
             
                output_text = tokenizer.decode(output[0], skip_special_tokens=True)
         | 
| 73 | 
             
                total_length = output.shape[1]  # Includes both input and output tokens
         | 
| @@ -81,19 +78,18 @@ def query_teapot(prompt, context, user_input): | |
| 81 | 
             
                return output_text
         | 
| 82 |  | 
| 83 |  | 
| 84 | 
            -
             | 
| 85 | 
             
            @log_time
         | 
| 86 | 
            -
            def handle_chat(user_input):
         | 
| 87 | 
             
                search_start_time = time.time()
         | 
| 88 | 
            -
                results = brave_search(user_input)
         | 
| 89 | 
             
                search_end_time = time.time()
         | 
| 90 |  | 
| 91 | 
            -
                documents = [desc.replace('<strong>','').replace('</strong>','') for _, desc, _ in results]
         | 
| 92 |  | 
| 93 | 
             
                context = "\n".join(documents)
         | 
| 94 | 
             
                prompt = """You are Teapot, an open-source AI assistant optimized for low-end devices, providing short, accurate responses without hallucinating while excelling at information extraction and text summarization. If a user asks who you are reply "I am Teapot"."""
         | 
| 95 | 
             
                generation_start_time = time.time()
         | 
| 96 | 
            -
                response = query_teapot(prompt, context, user_input)
         | 
| 97 | 
             
                generation_end_time = time.time()
         | 
| 98 |  | 
| 99 | 
             
                debug_info = f"""
         | 
| @@ -108,9 +104,9 @@ Generation time: {generation_end_time - generation_start_time:.2f} seconds | |
| 108 | 
             
            Response: {response}
         | 
| 109 | 
             
            """
         | 
| 110 |  | 
| 111 | 
            -
                
         | 
| 112 | 
             
                return response, debug_info
         | 
| 113 |  | 
|  | |
| 114 | 
             
            st.write("418 I'm a teapot")
         | 
| 115 |  | 
| 116 | 
             
            DISCORD_TOKEN = os.environ.get("discord_key")
         | 
| @@ -135,11 +131,10 @@ async def on_message(message): | |
| 135 | 
             
                    return
         | 
| 136 | 
             
                print(message.content)
         | 
| 137 |  | 
| 138 | 
            -
             | 
| 139 | 
             
                is_debug = "<debug>" in message.content
         | 
| 140 | 
             
                async with message.channel.typing():
         | 
| 141 | 
             
                    # Respond with "pong" if the message contains "ping"
         | 
| 142 | 
            -
                    response, debug_info = handle_chat(message.content.replace("<debug>","").replace("</debug>",""))
         | 
| 143 |  | 
| 144 | 
             
                    print(response)
         | 
| 145 | 
             
                    sent_message = await message.reply(response)
         | 
| @@ -153,6 +148,4 @@ async def on_message(message): | |
| 153 |  | 
| 154 |  | 
| 155 | 
             
            # Run the bot with your token
         | 
| 156 | 
            -
             | 
| 157 | 
             
            client.run(DISCORD_TOKEN)
         | 
| 158 | 
            -
             | 
|  | |
| 1 | 
             
            import streamlit as st
         | 
| 2 | 
             
            import hashlib
         | 
| 3 | 
             
            import os
         | 
| 4 | 
            +
            import aiohttp
         | 
| 5 | 
            +
            import asyncio
         | 
| 6 | 
             
            import time
         | 
| 7 | 
             
            from langsmith import traceable
         | 
| 8 | 
             
            import random
         | 
| 9 | 
             
            import discord
         | 
|  | |
| 10 | 
             
            from transformers import pipeline
         | 
|  | |
| 11 | 
             
            from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
         | 
| 12 | 
             
            import numpy as np
         | 
| 13 | 
             
            from sklearn.metrics.pairwise import cosine_similarity
         | 
|  | |
| 17 | 
             
            import re
         | 
| 18 | 
             
            import os
         | 
| 19 |  | 
|  | |
|  | |
| 20 | 
             
            st.set_page_config(page_title="TeapotAI Discord Bot", page_icon=":robot_face:", layout="wide")
         | 
| 21 | 
             
            tokenizer = None
         | 
| 22 | 
             
            model = None
         | 
|  | |
| 25 | 
             
            model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
         | 
| 26 |  | 
| 27 |  | 
|  | |
| 28 | 
             
            def log_time(func):
         | 
| 29 | 
            +
                async def wrapper(*args, **kwargs):
         | 
| 30 | 
             
                    start_time = time.time()
         | 
| 31 | 
            +
                    result = await func(*args, **kwargs)  # Make it awaitable
         | 
| 32 | 
             
                    end_time = time.time()
         | 
| 33 | 
             
                    print(f"{func.__name__} executed in {end_time - start_time:.4f} seconds")
         | 
| 34 | 
             
                    return result
         | 
|  | |
| 38 | 
             
            API_KEY = os.environ.get("brave_api_key")
         | 
| 39 |  | 
| 40 | 
             
            @log_time
         | 
| 41 | 
            +
            async def brave_search(query, count=3):
         | 
| 42 | 
             
                url = "https://api.search.brave.com/res/v1/web/search"
         | 
| 43 | 
             
                headers = {"Accept": "application/json", "X-Subscription-Token": API_KEY}
         | 
| 44 | 
             
                params = {"q": query, "count": count}
         | 
| 45 | 
            +
             | 
| 46 | 
            +
                async with aiohttp.ClientSession() as session:
         | 
| 47 | 
            +
                    async with session.get(url, headers=headers, params=params) as response:
         | 
| 48 | 
            +
                        if response.status == 200:
         | 
| 49 | 
            +
                            results = await response.json()
         | 
| 50 | 
            +
                            print(results)
         | 
| 51 | 
            +
                            return [(res["title"], res["description"], res["url"]) for res in results.get("web", {}).get("results", [])]
         | 
| 52 | 
            +
                        else:
         | 
| 53 | 
            +
                            print(f"Error: {response.status}, {await response.text()}")
         | 
| 54 | 
            +
                            return []
         | 
| 55 | 
            +
             | 
| 56 |  | 
| 57 | 
             
            @traceable 
         | 
| 58 | 
             
            @log_time
         | 
| 59 | 
            +
            async def query_teapot(prompt, context, user_input):
         | 
| 60 | 
             
                input_text = prompt + "\n" + context + "\n" + user_input
         | 
| 61 | 
             
                print(input_text)
         | 
| 62 | 
             
                start_time = time.time()
         | 
|  | |
| 64 | 
             
                inputs = tokenizer(input_text, return_tensors="pt")
         | 
| 65 | 
             
                input_length = inputs["input_ids"].shape[1]
         | 
| 66 |  | 
| 67 | 
            +
                output = await asyncio.to_thread(model.generate, **inputs, max_new_tokens=512)
         | 
| 68 |  | 
| 69 | 
             
                output_text = tokenizer.decode(output[0], skip_special_tokens=True)
         | 
| 70 | 
             
                total_length = output.shape[1]  # Includes both input and output tokens
         | 
|  | |
| 78 | 
             
                return output_text
         | 
| 79 |  | 
| 80 |  | 
|  | |
| 81 | 
             
            @log_time
         | 
| 82 | 
            +
            async def handle_chat(user_input):
         | 
| 83 | 
             
                search_start_time = time.time()
         | 
| 84 | 
            +
                results = await brave_search(user_input)
         | 
| 85 | 
             
                search_end_time = time.time()
         | 
| 86 |  | 
| 87 | 
            +
                documents = [desc.replace('<strong>', '').replace('</strong>', '') for _, desc, _ in results]
         | 
| 88 |  | 
| 89 | 
             
                context = "\n".join(documents)
         | 
| 90 | 
             
                prompt = """You are Teapot, an open-source AI assistant optimized for low-end devices, providing short, accurate responses without hallucinating while excelling at information extraction and text summarization. If a user asks who you are reply "I am Teapot"."""
         | 
| 91 | 
             
                generation_start_time = time.time()
         | 
| 92 | 
            +
                response = await query_teapot(prompt, context, user_input)
         | 
| 93 | 
             
                generation_end_time = time.time()
         | 
| 94 |  | 
| 95 | 
             
                debug_info = f"""
         | 
|  | |
| 104 | 
             
            Response: {response}
         | 
| 105 | 
             
            """
         | 
| 106 |  | 
|  | |
| 107 | 
             
                return response, debug_info
         | 
| 108 |  | 
| 109 | 
            +
             | 
| 110 | 
             
            st.write("418 I'm a teapot")
         | 
| 111 |  | 
| 112 | 
             
            DISCORD_TOKEN = os.environ.get("discord_key")
         | 
|  | |
| 131 | 
             
                    return
         | 
| 132 | 
             
                print(message.content)
         | 
| 133 |  | 
|  | |
| 134 | 
             
                is_debug = "<debug>" in message.content
         | 
| 135 | 
             
                async with message.channel.typing():
         | 
| 136 | 
             
                    # Respond with "pong" if the message contains "ping"
         | 
| 137 | 
            +
                    response, debug_info = await handle_chat(message.content.replace("<debug>", "").replace("</debug>", ""))
         | 
| 138 |  | 
| 139 | 
             
                    print(response)
         | 
| 140 | 
             
                    sent_message = await message.reply(response)
         | 
|  | |
| 148 |  | 
| 149 |  | 
| 150 | 
             
            # Run the bot with your token
         | 
|  | |
| 151 | 
             
            client.run(DISCORD_TOKEN)
         | 
|  | 

