Spaces:
Running
Running
| import gradio as gr | |
| import librosa | |
| import numpy as np | |
| import torch | |
| from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan | |
| processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") | |
| model = SpeechT5ForTextToSpeech.from_pretrained("tejas1206/speecht5_tts_ta") | |
| vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") | |
| speaker_embeddings = { | |
| "BDL": "speaker/cmu_us_bdl_arctic-wav-arctic_a0009.npy", | |
| "CLB": "speaker/cmu_us_clb_arctic-wav-arctic_a0144.npy", | |
| "KSP": "speaker/cmu_us_ksp_arctic-wav-arctic_b0087.npy", | |
| "RMS": "speaker/cmu_us_rms_arctic-wav-arctic_b0353.npy", | |
| "SLT": "speaker/cmu_us_slt_arctic-wav-arctic_a0508.npy", | |
| } | |
| def convert_text(sentence): | |
| replacements = [ | |
| (' ', ' '), # Space | |
| ('&', 'and'), # Ampersand | |
| ('_', '_'), # Underscore | |
| ('`', '`'), # Backtick | |
| ('·', '.'), # Middle dot | |
| ('á', 'a'), # Accent on 'a' | |
| ('ô', 'o'), # Accent on 'o' | |
| ('š', 's'), # 'S' with caron (soft s sound) | |
| ('ஃ', 'akh'), # Aytham (Tamil diacritic) | |
| ('அ', 'a'), # Tamil letter A | |
| ('ஆ', 'aa'), # Tamil letter AA | |
| ('இ', 'i'), # Tamil letter I | |
| ('ஈ', 'ii'), # Tamil letter II | |
| ('உ', 'u'), # Tamil letter U | |
| ('ஊ', 'uu'), # Tamil letter UU | |
| ('எ', 'e'), # Tamil letter E | |
| ('ஏ', 'ee'), # Tamil letter EE | |
| ('ஐ', 'ai'), # Tamil letter AI | |
| ('ஒ', 'o'), # Tamil letter O | |
| ('ஓ', 'oo'), # Tamil letter OO | |
| ('ஔ', 'au'), # Tamil letter AU | |
| ('க', 'ka'), # Tamil letter KA | |
| ('ங', 'nga'), # Tamil letter NGA | |
| ('ச', 'cha'), # Tamil letter CHA | |
| ('ஜ', 'ja'), # Tamil letter JA | |
| ('ஞ', 'nya'), # Tamil letter NYA | |
| ('ட', 'ta'), # Tamil letter TTA (retroflex T) | |
| ('ண', 'na'), # Tamil letter NNA (retroflex N) | |
| ('த', 'tha'), # Tamil letter THA | |
| ('ந', 'na'), # Tamil letter NA | |
| ('ன', 'na'), # Tamil letter NN (alveolar N) | |
| ('ப', 'pa'), # Tamil letter PA | |
| ('ம', 'ma'), # Tamil letter MA | |
| ('ய', 'ya'), # Tamil letter YA | |
| ('ர', 'ra'), # Tamil letter RA | |
| ('ற', 'rra'), # Tamil letter RRA (retroflex R) | |
| ('ல', 'la'), # Tamil letter LA | |
| ('ள', 'lla'), # Tamil letter LLA (retroflex L) | |
| ('ழ', 'zha'), # Tamil letter LLA (unique Tamil letter) | |
| ('வ', 'va'), # Tamil letter VA | |
| ('ஷ', 'sha'), # Tamil letter SHA | |
| ('ஸ', 'sa'), # Tamil letter SA | |
| ('ஹ', 'ha'), # Tamil letter HA | |
| ('ா', 'aa'), # Long A (Tamil vowel extension) | |
| ('ி', 'i'), # Short I (Tamil vowel extension) | |
| ('ீ', 'ii'), # Long I (Tamil vowel extension) | |
| ('ு', 'u'), # Short U (Tamil vowel extension) | |
| ('ூ', 'uu'), # Long U (Tamil vowel extension) | |
| ('ெ', 'e'), # Short E (Tamil vowel extension) | |
| ('ே', 'ee'), # Long E (Tamil vowel extension) | |
| ('ை', 'ai'), # Tamil diphthong AI | |
| ('ொ', 'o'), # Short O (Tamil vowel extension) | |
| ('ோ', 'oo'), # Long O (Tamil vowel extension) | |
| ('ௌ', 'au'), # Tamil diphthong AU | |
| ('்', ''), # Tamil virama (removes inherent vowel) | |
| ('ௗ', 'au'), # Rare Tamil vowel diacritic | |
| ('ഥ', 'tha'), # Malayalam letter THA | |
| ('–', '-'), # En dash | |
| ('‘', "'"), # Left single quotation mark | |
| ('’', "'"), # Right single quotation mark | |
| ('‚', ','), # Single low quotation mark | |
| ('“', '"'), # Left double quotation mark | |
| ('”', '"'), # Right double quotation mark | |
| ('•', '.'), # Bullet point | |
| ('…', '...'), # Ellipsis | |
| ('′', "'"), # Prime (minutes or feet symbol) | |
| ('″', '"'), # Double prime (seconds or inches symbol) | |
| ('●', '.'), # Filled bullet | |
| ('◯', 'o'), # Circle symbol | |
| ] | |
| for src, dst in replacements: | |
| sentence = sentence.replace(src, dst) | |
| return sentence | |
| def predict(text, speaker): | |
| if len(text.strip()) == 0: | |
| return (16000, np.zeros(0).astype(np.int16)) | |
| text = convert_text(text) | |
| inputs = processor(text=text, return_tensors="pt") | |
| # limit input length | |
| input_ids = inputs["input_ids"] | |
| input_ids = input_ids[..., :model.config.max_text_positions] | |
| if speaker == "Surprise Me!": | |
| # load one of the provided speaker embeddings at random | |
| idx = np.random.randint(len(speaker_embeddings)) | |
| key = list(speaker_embeddings.keys())[idx] | |
| speaker_embedding = np.load(speaker_embeddings[key]) | |
| # randomly shuffle the elements | |
| np.random.shuffle(speaker_embedding) | |
| # randomly flip half the values | |
| x = (np.random.rand(512) >= 0.5) * 1.0 | |
| x[x == 0] = -1.0 | |
| speaker_embedding *= x | |
| #speaker_embedding = np.random.rand(512).astype(np.float32) * 0.3 - 0.15 | |
| else: | |
| speaker_embedding = np.load(speaker_embeddings[speaker[:3]]) | |
| speaker_embedding = torch.tensor(speaker_embedding).unsqueeze(0) | |
| speech = model.generate_speech(input_ids, speaker_embedding, vocoder=vocoder) | |
| speech = (speech.numpy() * 32767).astype(np.int16) | |
| return (16000, speech) | |
| title = "Text-to-Speech App using SpeechT5" | |
| gr.Interface( | |
| fn=predict, | |
| inputs=[ | |
| gr.Text(label="Input Text"), | |
| gr.Radio(label="Speaker", choices=[ | |
| "BDL (male)", | |
| "CLB (female)", | |
| "KSP (male)", | |
| "RMS (male)", | |
| "SLT (female)", | |
| "Surprise Me!" | |
| ], | |
| value="BDL (male)"), | |
| ], | |
| outputs=[ | |
| gr.Audio(label="Generated Speech", type="numpy"), | |
| ], | |
| title=title, | |
| ).launch() | |