Spaces:
Runtime error
Runtime error
File size: 12,542 Bytes
bfd34e9 29ac50c bfd34e9 29ac50c bfd34e9 29ac50c bfd34e9 da1e12f bfd34e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
import os
from collections import OrderedDict
import gradio as gr
import shutil
import uuid
import torch
from pathlib import Path
from lib.utils.iimage import IImage
from PIL import Image
from lib import models
from lib.methods import rasg, sd, sr
from lib.utils import poisson_blend, image_from_url_text
TMP_DIR = 'gradio_tmp'
if Path(TMP_DIR).exists():
shutil.rmtree(TMP_DIR)
Path(TMP_DIR).mkdir(exist_ok=True, parents=True)
os.environ['GRADIO_TEMP_DIR'] = TMP_DIR
on_huggingspace = os.environ.get("SPACE_AUTHOR_NAME") == "PAIR"
negative_prompt_str = "text, bad anatomy, bad proportions, blurry, cropped, deformed, disfigured, duplicate, error, extra limbs, gross proportions, jpeg artifacts, long neck, low quality, lowres, malformed, morbid, mutated, mutilated, out of frame, ugly, worst quality"
positive_prompt_str = "Full HD, 4K, high quality, high resolution"
example_inputs = [
['assets/examples/images/a40.jpg', 'medieval castle'],
['assets/examples/images/a4.jpg', 'parrot'],
['assets/examples/images/a65.jpg', 'hoodie'],
['assets/examples/images/a54.jpg', 'salad'],
['assets/examples/images/a51.jpg', 'space helmet'],
['assets/examples/images/a46.jpg', 'stack of books'],
['assets/examples/images/a19.jpg', 'antique greek vase'],
['assets/examples/images/a2.jpg', 'sunglasses'],
]
thumbnails = [
'assets/examples/sbs/a40.png',
'assets/examples/sbs/a4.png',
'assets/examples/sbs/a65.png',
'assets/examples/sbs/a54.png',
'assets/examples/sbs/a51.png',
'assets/examples/sbs/a46.png',
'assets/examples/sbs/a19.png',
'assets/examples/sbs/a2.png'
]
example_previews = [
[thumbnails[0], 'Prompt: medieval castle'],
[thumbnails[1], 'Prompt: parrot'],
[thumbnails[2], 'Prompt: hoodie'],
[thumbnails[3], 'Prompt: salad'],
[thumbnails[4], 'Prompt: space helmet'],
[thumbnails[5], 'Prompt: laptop'],
[thumbnails[6], 'Prompt: antique greek vase'],
[thumbnails[7], 'Prompt: sunglasses'],
]
# Load models
inpainting_models = OrderedDict([
("Dreamshaper Inpainting V8", models.ds_inp.load_model()),
("Stable-Inpainting 2.0", models.sd2_inp.load_model()),
("Stable-Inpainting 1.5", models.sd15_inp.load_model())
])
sr_model = models.sd2_sr.load_model(device='cuda:1')
sam_predictor = models.sam.load_model(device='cuda:0')
inp_model = None
cached_inp_model_name = ''
def remove_cached_inpainting_model():
global inp_model
global cached_inp_model_name
del inp_model
inp_model = None
cached_inp_model_name = ''
torch.cuda.empty_cache()
def set_model_from_name(inp_model_name):
global cached_inp_model_name
global inp_model
if inp_model_name == cached_inp_model_name:
print (f"Activating Cached Inpaintng Model: {inp_model_name}")
return
print (f"Activating Inpaintng Model: {inp_model_name}")
inp_model = inpainting_models[inp_model_name]
cached_inp_model_name = inp_model_name
def rasg_run(use_painta, prompt, input, seed, eta, negative_prompt, positive_prompt, ddim_steps,
guidance_scale=7.5, batch_size=4):
torch.cuda.empty_cache()
seed = int(seed)
batch_size = max(1, min(int(batch_size), 4))
image = IImage(input['image']).resize(512)
mask = IImage(input['mask']).rgb().resize(512)
method = ['rasg']
if use_painta: method.append('painta')
inpainted_images = []
blended_images = []
for i in range(batch_size):
inpainted_image = rasg.run(
ddim = inp_model,
method = '-'.join(method),
prompt = prompt,
image = image.padx(64),
mask = mask.alpha().padx(64),
seed = seed+i*1000,
eta = eta,
prefix = '{}',
negative_prompt = negative_prompt,
positive_prompt = f', {positive_prompt}',
dt = 1000 // ddim_steps,
guidance_scale = guidance_scale
).crop(image.size)
blended_image = poisson_blend(orig_img = image.data[0], fake_img = inpainted_image.data[0],
mask = mask.data[0], dilation = 12)
blended_images.append(blended_image)
inpainted_images.append(inpainted_image.numpy()[0])
return blended_images, inpainted_images
def sd_run(use_painta, prompt, input, seed, eta, negative_prompt, positive_prompt, ddim_steps,
guidance_scale=7.5, batch_size=4):
torch.cuda.empty_cache()
seed = int(seed)
batch_size = max(1, min(int(batch_size), 4))
image = IImage(input['image']).resize(512)
mask = IImage(input['mask']).rgb().resize(512)
method = ['default']
if use_painta: method.append('painta')
inpainted_images = []
blended_images = []
for i in range(batch_size):
inpainted_image = sd.run(
ddim = inp_model,
method = '-'.join(method),
prompt = prompt,
image = image.padx(64),
mask = mask.alpha().padx(64),
seed = seed+i*1000,
eta = eta,
prefix = '{}',
negative_prompt = negative_prompt,
positive_prompt = f', {positive_prompt}',
dt = 1000 // ddim_steps,
guidance_scale = guidance_scale
).crop(image.size)
blended_image = poisson_blend(orig_img = image.data[0], fake_img = inpainted_image.data[0],
mask = mask.data[0], dilation = 12)
blended_images.append(blended_image)
inpainted_images.append(inpainted_image.numpy()[0])
return blended_images, inpainted_images
def upscale_run(
prompt, input, ddim_steps, seed, use_sam_mask, gallery, img_index,
negative_prompt='', positive_prompt=', high resolution professional photo'):
torch.cuda.empty_cache()
# Load SR model and SAM predictor
# sr_model = models.sd2_sr.load_model()
# sam_predictor = None
# if use_sam_mask:
# sam_predictor = models.sam.load_model()
seed = int(seed)
img_index = int(img_index)
img_index = 0 if img_index < 0 else img_index
img_index = len(gallery) - 1 if img_index >= len(gallery) else img_index
img_info = gallery[img_index if img_index >= 0 else 0]
inpainted_image = image_from_url_text(img_info)
lr_image = IImage(inpainted_image)
hr_image = IImage(input['image']).resize(2048)
hr_mask = IImage(input['mask']).resize(2048)
output_image = sr.run(sr_model, sam_predictor, lr_image, hr_image, hr_mask, prompt=prompt + positive_prompt,
noise_level=0, blend_trick=True, blend_output=True, negative_prompt=negative_prompt,
seed=seed, use_sam_mask=use_sam_mask)
return output_image.numpy()[0], output_image.numpy()[0]
def switch_run(use_rasg, model_name, *args):
set_model_from_name(model_name)
if use_rasg:
return rasg_run(*args)
return sd_run(*args)
with gr.Blocks(css='style.css') as demo:
gr.HTML(
"""
<div style="text-align: center; max-width: 1200px; margin: 20px auto;">
<h1 style="font-weight: 900; font-size: 3rem; margin-bottom: 0.5rem">
🧑🎨 HD-Painter Demo
</h1>
<h2 style="font-weight: 450; font-size: 1rem; margin: 0rem">
Hayk Manukyan<sup>1*</sup>, Andranik Sargsyan<sup>1*</sup>, Barsegh Atanyan<sup>1</sup>, Zhangyang Wang<sup>1,2</sup>, Shant Navasardyan<sup>1</sup>
and <a href="https://www.humphreyshi.com/home">Humphrey Shi</a><sup>1,3</sup>
</h2>
<h2 style="font-weight: 450; font-size: 1rem; margin: 0rem">
<sup>1</sup>Picsart AI Resarch (PAIR), <sup>2</sup>UT Austin, <sup>3</sup>Georgia Tech
</h2>
<h2 style="font-weight: 450; font-size: 1rem; margin: 0rem">
[<a href="https://arxiv.org/abs/2312.14091" style="color:blue;">arXiv</a>]
[<a href="https://github.com/Picsart-AI-Research/HD-Painter" style="color:blue;">GitHub</a>]
</h2>
<h2 style="font-weight: 450; font-size: 1rem; margin: 0.7rem auto; max-width: 1000px">
<b>HD-Painter</b> enables prompt-faithfull and high resolution (up to 2k) image inpainting upon any diffusion-based image inpainting method.
</h2>
</div>
""")
if on_huggingspace:
gr.HTML("""
<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.
<br/>
<a href="https://huggingface.co/spaces/PAIR/HD-Painter?duplicate=true">
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
</p>""")
with open('script.js', 'r') as f:
js_str = f.read()
demo.load(_js=js_str)
with gr.Row():
with gr.Column():
model_picker = gr.Dropdown(
list(inpainting_models.keys()),
value=0,
label = "Please select a model!",
)
with gr.Column():
use_painta = gr.Checkbox(value = True, label = "Use PAIntA")
use_rasg = gr.Checkbox(value = True, label = "Use RASG")
prompt = gr.Textbox(label = "Inpainting Prompt")
with gr.Row():
with gr.Column():
input = gr.ImageMask(label = "Input Image", brush_color='#ff0000', elem_id="inputmask")
with gr.Row():
inpaint_btn = gr.Button("Inpaint", scale = 0)
with gr.Accordion('Advanced options', open=False):
guidance_scale = gr.Slider(minimum = 0, maximum = 30, value = 7.5, label = "Guidance Scale")
eta = gr.Slider(minimum = 0, maximum = 1, value = 0.1, label = "eta")
ddim_steps = gr.Slider(minimum = 10, maximum = 100, value = 50, step = 1, label = 'Number of diffusion steps')
with gr.Row():
seed = gr.Number(value = 49123, label = "Seed")
batch_size = gr.Number(value = 1, label = "Batch size", minimum=1, maximum=4)
negative_prompt = gr.Textbox(value=negative_prompt_str, label = "Negative prompt", lines=3)
positive_prompt = gr.Textbox(value=positive_prompt_str, label = "Positive prompt", lines=1)
with gr.Column():
with gr.Row():
output_gallery = gr.Gallery(
[],
columns = 4,
preview = True,
allow_preview = True,
object_fit='scale-down',
elem_id='outputgallery'
)
with gr.Row():
upscale_btn = gr.Button("Send to Inpainting-Specialized Super-Resolution (x4)", scale = 1)
with gr.Row():
use_sam_mask = gr.Checkbox(value = False, label = "Use SAM mask for background preservation (for SR only, experimental feature)")
with gr.Row():
hires_image = gr.Image(label = "Hi-res Image")
label = gr.Markdown("## High-Resolution Generation Samples (2048px large side)")
with gr.Column():
example_container = gr.Gallery(
example_previews,
columns = 4,
preview = True,
allow_preview = True,
object_fit='scale-down'
)
gr.Examples(
[
example_inputs[i] + [[example_previews[i]]]
for i in range(len(example_previews))
],
[input, prompt, example_container]
)
mock_output_gallery = gr.Gallery([], columns = 4, visible=False)
mock_hires = gr.Image(label = "__MHRO__", visible = False)
html_info = gr.HTML(elem_id=f'html_info', elem_classes="infotext")
inpaint_btn.click(
fn=switch_run,
inputs=[
use_rasg,
model_picker,
use_painta,
prompt,
input,
seed,
eta,
negative_prompt,
positive_prompt,
ddim_steps,
guidance_scale,
batch_size
],
outputs=[output_gallery, mock_output_gallery],
api_name="inpaint"
)
upscale_btn.click(
fn=upscale_run,
inputs=[
prompt,
input,
ddim_steps,
seed,
use_sam_mask,
mock_output_gallery,
html_info
],
outputs=[hires_image, mock_hires],
api_name="upscale",
_js="function(a, b, c, d, e, f, g){ return [a, b, c, d, e, f, selected_gallery_index()] }",
)
demo.queue()
demo.launch(share=True, allowed_paths=[TMP_DIR]) |