File size: 2,985 Bytes
bfd34e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# CrossAttn precision handling
import os

_ATTN_PRECISION = os.environ.get("ATTN_PRECISION", "fp32")

import torch
from torch import nn

from torch import einsum
from einops import rearrange, repeat
import torch
from torch import nn
from typing import Optional, Any
from ...patches import router

class CrossAttention(nn.Module):
    def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0):
        super().__init__()
        inner_dim = dim_head * heads
        context_dim = context_dim or query_dim

        self.scale = dim_head**-0.5
        self.heads = heads

        self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
        self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
        self.to_v = nn.Linear(context_dim, inner_dim, bias=False)

        self.to_out = nn.Sequential(
            nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
        )

    def forward(self, x, context=None, mask=None):
        h = self.heads

        q = self.to_q(x)
        context = x if context is None else context
        k = self.to_k(context)
        v = self.to_v(context)

        q, k, v = map(lambda t: rearrange(t, "b n (h d) -> (b h) n d", h=h), (q, k, v))

        # force cast to fp32 to avoid overflowing
        if _ATTN_PRECISION == "fp32":
            with torch.autocast(enabled=False, device_type="cuda"):
                q, k = q.float(), k.float()
                sim = einsum("b i d, b j d -> b i j", q, k) * self.scale
        else:
            sim = einsum("b i d, b j d -> b i j", q, k) * self.scale

        del q, k

        if mask is not None:
            mask = rearrange(mask, "b ... -> b (...)")
            max_neg_value = -torch.finfo(sim.dtype).max
            mask = repeat(mask, "b j -> (b h) () j", h=h)
            sim.masked_fill_(~mask, max_neg_value)

        # attention, what we cannot get enough of
        sim = sim.softmax(dim=-1)

        out = einsum("b i j, b j d -> b i d", sim, v)
        out = rearrange(out, "(b h) n d -> b n (h d)", h=h)
        return self.to_out(out)

class PatchedCrossAttention(nn.Module):
    # https://github.com/MatthieuTPHR/diffusers/blob/d80b531ff8060ec1ea982b65a1b8df70f73aa67c/src/diffusers/models/attention.py#L223
    def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0):
        super().__init__()
        inner_dim = dim_head * heads
        context_dim = context_dim or query_dim

        self.heads = heads
        self.dim_head = dim_head
        self.scale = dim_head**-0.5

        self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
        self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
        self.to_v = nn.Linear(context_dim, inner_dim, bias=False)

        self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout))
        self.attention_op: Optional[Any] = None

    def forward(self, x, context=None, mask=None):
        return router.attention_forward(self, x, context, mask)