import torch from torch import nn from .feed_forward import FeedForward try: from .cross_attention import PatchedCrossAttention as CrossAttention except: try: from .memory_efficient_cross_attention import MemoryEfficientCrossAttention as CrossAttention except: from .cross_attention import CrossAttention from ..util import checkpoint from ...patches import router class BasicTransformerBlock(nn.Module): def __init__( self,dim,n_heads,d_head,dropout=0.0,context_dim=None, gated_ff=True,checkpoint=True,disable_self_attn=False, ): super().__init__() self.disable_self_attn = disable_self_attn # is a self-attention if not self.disable_self_attn self.attn1 = CrossAttention(query_dim=dim,heads=n_heads,dim_head=d_head,dropout=dropout,context_dim=context_dim if self.disable_self_attn else None) self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) # is self-attn if context is none self.attn2 = CrossAttention(query_dim=dim,context_dim=context_dim,heads=n_heads,dim_head=d_head,dropout=dropout) self.norm1 = nn.LayerNorm(dim) self.norm2 = nn.LayerNorm(dim) self.norm3 = nn.LayerNorm(dim) self.checkpoint = checkpoint def forward(self, x, context=None): return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint) def _forward(self, x, context=None): x = x + self.attn1(self.norm1(x), context=context if self.disable_self_attn else None) x = x + self.attn2(self.norm2(x), context=context) x = x + self.ff(self.norm3(x)) return x class PatchedBasicTransformerBlock(nn.Module): def __init__( self,dim,n_heads,d_head,dropout=0.0,context_dim=None, gated_ff=True,checkpoint=True,disable_self_attn=False, ): super().__init__() self.disable_self_attn = disable_self_attn # is a self-attention if not self.disable_self_attn self.attn1 = CrossAttention(query_dim=dim,heads=n_heads,dim_head=d_head,dropout=dropout,context_dim=context_dim if self.disable_self_attn else None) self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) # is self-attn if context is none self.attn2 = CrossAttention(query_dim=dim,context_dim=context_dim,heads=n_heads,dim_head=d_head,dropout=dropout) self.norm1 = nn.LayerNorm(dim) self.norm2 = nn.LayerNorm(dim) self.norm3 = nn.LayerNorm(dim) self.checkpoint = checkpoint def forward(self, x, context=None): return checkpoint(self._forward, (x, context), self.parameters(), self.checkpoint) def _forward(self, x, context=None): return router.basic_transformer_forward(self, x, context)