magenta / app.py
thecollabagepatch's picture
drop first bar
c4aed03
from magenta_rt import system, audio as au
import numpy as np
from fastapi import FastAPI, UploadFile, File, Form
import tempfile, io, base64, math, threading
from fastapi.middleware.cors import CORSMiddleware
from contextlib import contextmanager
import soundfile as sf
import numpy as np
from math import gcd
from scipy.signal import resample_poly
@contextmanager
def mrt_overrides(mrt, **kwargs):
"""Temporarily set attributes on MRT if they exist; restore after."""
old = {}
try:
for k, v in kwargs.items():
if hasattr(mrt, k):
old[k] = getattr(mrt, k)
setattr(mrt, k, v)
yield
finally:
for k, v in old.items():
setattr(mrt, k, v)
# loudness utils
try:
import pyloudnorm as pyln
_HAS_LOUDNORM = True
except Exception:
_HAS_LOUDNORM = False
def _measure_lufs(wav: au.Waveform) -> float:
# pyloudnorm expects float32/float64, shape (n,) or (n, ch)
meter = pyln.Meter(wav.sample_rate) # defaults to BS.1770-4
return float(meter.integrated_loudness(wav.samples))
def _rms(x: np.ndarray) -> float:
if x.size == 0: return 0.0
return float(np.sqrt(np.mean(x**2)))
def match_loudness_to_reference(
ref: au.Waveform,
target: au.Waveform,
method: str = "auto", # "auto"|"lufs"|"rms"|"none"
headroom_db: float = 1.0
) -> tuple[au.Waveform, dict]:
"""
Scales `target` to match `ref` loudness. Returns (adjusted_wave, stats).
"""
stats = {"method": method, "applied_gain_db": 0.0}
if method == "none":
return target, stats
if method == "auto":
method = "lufs" if _HAS_LOUDNORM else "rms"
if method == "lufs" and _HAS_LOUDNORM:
L_ref = _measure_lufs(ref)
L_tgt = _measure_lufs(target)
delta_db = L_ref - L_tgt
gain = 10.0 ** (delta_db / 20.0)
y = target.samples.astype(np.float32) * gain
stats.update({"ref_lufs": L_ref, "tgt_lufs_before": L_tgt, "applied_gain_db": delta_db})
else:
# RMS fallback
ra = _rms(ref.samples)
rb = _rms(target.samples)
if rb <= 1e-12:
return target, stats
gain = ra / rb
y = target.samples.astype(np.float32) * gain
stats.update({"ref_rms": ra, "tgt_rms_before": rb, "applied_gain_db": 20*np.log10(max(gain,1e-12))})
# simple peak “limiter” to keep headroom
limit = 10 ** (-headroom_db / 20.0) # e.g., -1 dBFS
peak = float(np.max(np.abs(y))) if y.size else 0.0
if peak > limit:
y *= (limit / peak)
stats["post_peak_limited"] = True
else:
stats["post_peak_limited"] = False
target.samples = y.astype(np.float32)
return target, stats
# ----------------------------
# Crossfade stitch (your good path)
# ----------------------------
def stitch_generated(chunks, sr, xfade_s):
if not chunks:
raise ValueError("no chunks")
xfade_n = int(round(xfade_s * sr))
if xfade_n <= 0:
return au.Waveform(np.concatenate([c.samples for c in chunks], axis=0), sr)
t = np.linspace(0, np.pi/2, xfade_n, endpoint=False, dtype=np.float32)
eq_in, eq_out = np.sin(t)[:, None], np.cos(t)[:, None]
first = chunks[0].samples
if first.shape[0] < xfade_n:
raise ValueError("chunk shorter than crossfade prefix")
out = first[xfade_n:].copy() # drop model pre-roll
for i in range(1, len(chunks)):
cur = chunks[i].samples
if cur.shape[0] < xfade_n:
continue
head, tail = cur[:xfade_n], cur[xfade_n:]
mixed = out[-xfade_n:] * eq_out + head * eq_in
out = np.concatenate([out[:-xfade_n], mixed, tail], axis=0)
return au.Waveform(out, sr)
# ----------------------------
# Bar-aligned token context
# ----------------------------
def make_bar_aligned_context(tokens, bpm, fps=25, ctx_frames=250, beats_per_bar=4):
frames_per_bar_f = (beats_per_bar * 60.0 / bpm) * fps
frames_per_bar = int(round(frames_per_bar_f))
if abs(frames_per_bar - frames_per_bar_f) > 1e-3:
reps = int(np.ceil(ctx_frames / len(tokens)))
return np.tile(tokens, (reps, 1))[-ctx_frames:]
reps = int(np.ceil(ctx_frames / len(tokens)))
tiled = np.tile(tokens, (reps, 1))
end = (len(tiled) // frames_per_bar) * frames_per_bar
if end < ctx_frames:
return tiled[-ctx_frames:]
start = end - ctx_frames
return tiled[start:end]
def hard_trim_seconds(wav: au.Waveform, seconds: float) -> au.Waveform:
n = int(round(seconds * wav.sample_rate))
return au.Waveform(wav.samples[:n], wav.sample_rate)
def apply_micro_fades(wav: au.Waveform, ms: int = 5) -> None:
n = int(wav.sample_rate * ms / 1000.0)
if n > 0 and wav.samples.shape[0] > 2*n:
env = np.linspace(0.0, 1.0, n, dtype=np.float32)[:, None]
wav.samples[:n] *= env
wav.samples[-n:] *= env[::-1]
def take_bar_aligned_tail(wav, bpm, beats_per_bar, ctx_seconds, max_bars=None):
"""
Return the LAST N bars whose duration is as close as possible to ctx_seconds,
anchored to the end of `wav`, and bar-aligned.
"""
spb = (60.0 / bpm) * beats_per_bar
bars_needed = max(1, int(round(ctx_seconds / spb)))
if max_bars is not None:
bars_needed = min(bars_needed, max_bars)
tail_seconds = bars_needed * spb
n = int(round(tail_seconds * wav.sample_rate))
if n >= wav.samples.shape[0]:
return wav
return au.Waveform(wav.samples[-n:], wav.sample_rate)
# ----------------------------
# Main generation (single combined style vector)
# ----------------------------
def generate_loop_continuation_with_mrt(
mrt,
input_wav_path: str,
bpm: float,
extra_styles=None,
style_weights=None,
bars: int = 8,
beats_per_bar: int = 4,
loop_weight: float = 1.0,
loudness_mode: str = "auto",
loudness_headroom_db: float = 1.0,
intro_bars_to_drop: int = 0, # <— NEW
):
# Load & prep (unchanged)
loop = au.Waveform.from_file(input_wav_path).resample(mrt.sample_rate).as_stereo()
# Use tail for context (your recent change)
codec_fps = float(mrt.codec.frame_rate)
ctx_seconds = float(mrt.config.context_length_frames) / codec_fps
loop_for_context = take_bar_aligned_tail(loop, bpm, beats_per_bar, ctx_seconds)
tokens_full = mrt.codec.encode(loop_for_context).astype(np.int32)
tokens = tokens_full[:, :mrt.config.decoder_codec_rvq_depth]
# Bar-aligned token window (unchanged)
context_tokens = make_bar_aligned_context(
tokens, bpm=bpm, fps=int(mrt.codec.frame_rate),
ctx_frames=mrt.config.context_length_frames, beats_per_bar=beats_per_bar
)
state = mrt.init_state()
state.context_tokens = context_tokens
# STYLE embed (optional: switch to loop_for_context if you want stronger “recent” bias)
loop_embed = mrt.embed_style(loop_for_context)
embeds, weights = [loop_embed], [float(loop_weight)]
if extra_styles:
for i, s in enumerate(extra_styles):
if s.strip():
embeds.append(mrt.embed_style(s.strip()))
w = style_weights[i] if (style_weights and i < len(style_weights)) else 1.0
weights.append(float(w))
wsum = float(sum(weights)) or 1.0
weights = [w / wsum for w in weights]
combined_style = np.sum([w * e for w, e in zip(weights, embeds)], axis=0).astype(loop_embed.dtype)
# --- Length math ---
seconds_per_bar = beats_per_bar * (60.0 / bpm)
total_secs = bars * seconds_per_bar
drop_bars = max(0, int(intro_bars_to_drop))
drop_secs = min(drop_bars, bars) * seconds_per_bar # clamp to <= bars
gen_total_secs = total_secs + drop_secs # generate extra
# Chunk scheduling to cover gen_total_secs
chunk_secs = mrt.config.chunk_length_frames * mrt.config.frame_length_samples / mrt.sample_rate # ~2.0
steps = int(math.ceil(gen_total_secs / chunk_secs)) + 1 # pad then trim
# Generate
chunks = []
for _ in range(steps):
wav, state = mrt.generate_chunk(state=state, style=combined_style)
chunks.append(wav)
# Stitch continuous audio
stitched = stitch_generated(chunks, mrt.sample_rate, mrt.config.crossfade_length).as_stereo()
# Trim to generated length (bars + dropped bars)
stitched = hard_trim_seconds(stitched, gen_total_secs)
# 👉 Drop the intro bars
if drop_secs > 0:
n_drop = int(round(drop_secs * stitched.sample_rate))
stitched = au.Waveform(stitched.samples[n_drop:], stitched.sample_rate)
# Final exact-length trim to requested bars
out = hard_trim_seconds(stitched, total_secs)
# Final polish AFTER drop
out = out.peak_normalize(0.95)
apply_micro_fades(out, 5)
# Loudness match to input (after drop) so bar 1 sits right
out, loud_stats = match_loudness_to_reference(
ref=loop, target=out,
method=loudness_mode, headroom_db=loudness_headroom_db
)
return out, loud_stats
# ----------------------------
# FastAPI app with lazy, thread-safe model init
# ----------------------------
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # or lock to your domain(s)
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
_MRT = None
_MRT_LOCK = threading.Lock()
def get_mrt():
global _MRT
if _MRT is None:
with _MRT_LOCK:
if _MRT is None:
_MRT = system.MagentaRT(tag="base", guidance_weight=1.0, device="gpu", lazy=False)
return _MRT
@app.post("/generate")
def generate(
loop_audio: UploadFile = File(...),
bpm: float = Form(...),
bars: int = Form(8),
beats_per_bar: int = Form(4),
styles: str = Form("acid house"),
style_weights: str = Form(""),
loop_weight: float = Form(1.0),
loudness_mode: str = Form("auto"),
loudness_headroom_db: float = Form(1.0),
guidance_weight: float = Form(5.0),
temperature: float = Form(1.1),
topk: int = Form(40),
target_sample_rate: int | None = Form(None),
intro_bars_to_drop: int = Form(0), # <— NEW
):
# Read file
data = loop_audio.file.read()
if not data:
return {"error": "Empty file"}
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp:
tmp.write(data)
tmp_path = tmp.name
# Parse styles + weights
extra_styles = [s for s in (styles.split(",") if styles else []) if s.strip()]
weights = [float(x) for x in style_weights.split(",")] if style_weights else None
mrt = get_mrt() # warm once, in this worker thread
# Temporarily override MRT inference knobs for this request
with mrt_overrides(mrt,
guidance_weight=guidance_weight,
temperature=temperature,
topk=topk):
wav, loud_stats = generate_loop_continuation_with_mrt(
mrt,
input_wav_path=tmp_path,
bpm=bpm,
extra_styles=extra_styles,
style_weights=weights,
bars=bars,
beats_per_bar=beats_per_bar,
loop_weight=loop_weight,
loudness_mode=loudness_mode,
loudness_headroom_db=loudness_headroom_db,
intro_bars_to_drop=intro_bars_to_drop, # <— pass through
)
# 1) Figure out the desired SR
inp_info = sf.info(tmp_path)
input_sr = int(inp_info.samplerate)
target_sr = int(target_sample_rate or input_sr)
# 2) Convert magenta output to target_sr if needed
# wav.samples: shape [num_samples, num_channels], float32/-1..1 (per your code)
cur_sr = int(mrt.sample_rate)
x = wav.samples # np.ndarray (S, C)
if cur_sr != target_sr:
g = gcd(cur_sr, target_sr)
up, down = target_sr // g, cur_sr // g
# ensure 2D shape (S, C)
x = wav.samples
if x.ndim == 1:
x = x[:, None]
y = np.column_stack([resample_poly(x[:, ch], up, down) for ch in range(x.shape[1])])
else:
y = wav.samples if wav.samples.ndim == 2 else wav.samples[:, None]
# 3) Snap to exact frame count for loop-perfect length
seconds_per_bar = (60.0 / float(bpm)) * int(beats_per_bar)
expected_len = int(round(float(bars) * seconds_per_bar * target_sr))
if y.shape[0] < expected_len:
pad = np.zeros((expected_len - y.shape[0], y.shape[1]), dtype=y.dtype)
y = np.vstack([y, pad])
elif y.shape[0] > expected_len:
y = y[:expected_len, :]
total_samples = int(y.shape[0])
loop_duration_seconds = total_samples / float(target_sr)
# 4) Write y into buf as WAV @ target_sr
buf = io.BytesIO()
sf.write(buf, y, target_sr, subtype="FLOAT", format="WAV")
buf.seek(0)
audio_b64 = base64.b64encode(buf.read()).decode("utf-8")
# 5) Update metadata to be authoritative
metadata = {
"bpm": int(round(bpm)),
"bars": int(bars),
"beats_per_bar": int(beats_per_bar),
"styles": extra_styles,
"style_weights": weights,
"loop_weight": loop_weight,
"loudness": loud_stats,
"sample_rate": int(target_sr),
"channels": int(y.shape[1]),
"crossfade_seconds": mrt.config.crossfade_length,
"total_samples": total_samples,
"seconds_per_bar": seconds_per_bar,
"loop_duration_seconds": loop_duration_seconds,
"guidance_weight": guidance_weight,
"temperature": temperature,
"topk": topk,
}
return {"audio_base64": audio_b64, "metadata": metadata}
@app.get("/health")
def health():
return {"ok": True}