Spaces:
Running
Running
vincent-doan
commited on
Commit
·
fc75fbd
1
Parent(s):
9e41929
Added RCAN model
Browse files- models/RCAN/model.py +0 -0
- models/RCAN/rcan.py +105 -0
- models/RCAN/rcan_checkpoint.pth +3 -0
models/RCAN/model.py
DELETED
|
File without changes
|
models/RCAN/rcan.py
ADDED
|
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from torch import nn
|
| 2 |
+
|
| 3 |
+
NUM_RESIDUAL_GROUPS = 8
|
| 4 |
+
NUM_RESIDUAL_BLOCKS = 16
|
| 5 |
+
KERNEL_SIZE = 3
|
| 6 |
+
REDUCTION_RATIO = 16
|
| 7 |
+
NUM_CHANNELS = 64
|
| 8 |
+
UPSCALE_FACTOR = 4
|
| 9 |
+
|
| 10 |
+
class ResidualChannelAttentionBlock(nn.Module):
|
| 11 |
+
def __init__(self, num_channels=NUM_CHANNELS, reduction_ratio=REDUCTION_RATIO, kernel_size=KERNEL_SIZE):
|
| 12 |
+
|
| 13 |
+
super(ResidualChannelAttentionBlock, self).__init__()
|
| 14 |
+
|
| 15 |
+
self.feature_extractor = nn.Sequential(
|
| 16 |
+
nn.Conv2d(num_channels, num_channels, kernel_size=kernel_size, stride=1, padding=kernel_size//2),
|
| 17 |
+
nn.ReLU(),
|
| 18 |
+
nn.Conv2d(num_channels, num_channels, kernel_size=kernel_size, stride=1, padding=kernel_size//2)
|
| 19 |
+
)
|
| 20 |
+
|
| 21 |
+
self.channel_attention = nn.Sequential(
|
| 22 |
+
nn.AdaptiveAvgPool2d(1),
|
| 23 |
+
nn.Conv2d(num_channels, num_channels//reduction_ratio, kernel_size=1, stride=1),
|
| 24 |
+
nn.ReLU(),
|
| 25 |
+
# nn.BatchNorm2d(num_channels//reduction_ratio),
|
| 26 |
+
nn.Conv2d(num_channels//reduction_ratio, num_channels, kernel_size=1, stride=1),
|
| 27 |
+
nn.Sigmoid()
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
def forward(self, x):
|
| 31 |
+
block_input = x.clone()
|
| 32 |
+
|
| 33 |
+
residual = self.feature_extractor(x) # Feature extraction
|
| 34 |
+
rescale = self.channel_attention(residual) # Rescaling vector
|
| 35 |
+
|
| 36 |
+
block_output = block_input + (residual * rescale)
|
| 37 |
+
|
| 38 |
+
return block_output
|
| 39 |
+
|
| 40 |
+
class ResidualGroup(nn.Module):
|
| 41 |
+
def __init__(self, num_residual_blocks=NUM_RESIDUAL_BLOCKS,
|
| 42 |
+
num_channels=NUM_CHANNELS, reduction_ratio=REDUCTION_RATIO, kernel_size=KERNEL_SIZE):
|
| 43 |
+
|
| 44 |
+
super(ResidualGroup, self).__init__()
|
| 45 |
+
|
| 46 |
+
self.residual_blocks = nn.Sequential(
|
| 47 |
+
*[ResidualChannelAttentionBlock(num_channels=num_channels, reduction_ratio=reduction_ratio, kernel_size=kernel_size)
|
| 48 |
+
for _ in range(num_residual_blocks)]
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
self.final_conv = nn.Conv2d(num_channels, num_channels, kernel_size=kernel_size, stride=1, padding=kernel_size//2)
|
| 52 |
+
|
| 53 |
+
def forward(self, x):
|
| 54 |
+
group_input = x.clone()
|
| 55 |
+
|
| 56 |
+
residual = self.residual_blocks(x) # Residual blocks
|
| 57 |
+
residual = self.final_conv(residual) # Final convolution
|
| 58 |
+
|
| 59 |
+
group_output = group_input + residual
|
| 60 |
+
|
| 61 |
+
return group_output
|
| 62 |
+
|
| 63 |
+
class ResidualInResidual(nn.Module):
|
| 64 |
+
def __init__(self, num_residual_groups=NUM_RESIDUAL_GROUPS, num_residual_blocks=NUM_RESIDUAL_BLOCKS,
|
| 65 |
+
num_channels=NUM_CHANNELS, reduction_ratio=REDUCTION_RATIO, kernel_size=KERNEL_SIZE):
|
| 66 |
+
|
| 67 |
+
super(ResidualInResidual, self).__init__()
|
| 68 |
+
|
| 69 |
+
self.residual_groups = nn.Sequential(
|
| 70 |
+
*[ResidualGroup(num_residual_blocks=num_residual_blocks,
|
| 71 |
+
num_channels=num_channels, reduction_ratio=reduction_ratio, kernel_size=kernel_size)
|
| 72 |
+
for _ in range(num_residual_groups)]
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
self.final_conv = nn.Conv2d(num_channels, num_channels, kernel_size=kernel_size, stride=1, padding=kernel_size//2)
|
| 76 |
+
|
| 77 |
+
def forward(self, x):
|
| 78 |
+
shallow_feature = x.clone()
|
| 79 |
+
|
| 80 |
+
residual = self.residual_groups(x) # Residual groups
|
| 81 |
+
residual = self.final_conv(residual) # Final convolution
|
| 82 |
+
|
| 83 |
+
deep_feature = shallow_feature + residual
|
| 84 |
+
|
| 85 |
+
return deep_feature
|
| 86 |
+
|
| 87 |
+
class RCAN(nn.Module):
|
| 88 |
+
def __init__(self, num_residual_groups=NUM_RESIDUAL_GROUPS, num_residual_blocks=NUM_RESIDUAL_BLOCKS,
|
| 89 |
+
num_channels=NUM_CHANNELS, reduction_ratio=REDUCTION_RATIO, kernel_size=KERNEL_SIZE):
|
| 90 |
+
|
| 91 |
+
super(RCAN, self).__init__()
|
| 92 |
+
|
| 93 |
+
self.shallow_conv = nn.Conv2d(3, num_channels, kernel_size=kernel_size, stride=1, padding=kernel_size//2)
|
| 94 |
+
self.residual_in_residual = ResidualInResidual(num_residual_groups=num_residual_groups, num_residual_blocks=num_residual_blocks,
|
| 95 |
+
num_channels=num_channels, reduction_ratio=reduction_ratio, kernel_size=kernel_size)
|
| 96 |
+
self.upscaling_module = nn.PixelShuffle(upscale_factor=UPSCALE_FACTOR)
|
| 97 |
+
self.reconstruction_conv = nn.Conv2d(num_channels // (UPSCALE_FACTOR ** 2), 3, kernel_size=kernel_size, stride=1, padding=kernel_size//2)
|
| 98 |
+
|
| 99 |
+
def forward(self, x):
|
| 100 |
+
shallow_feature = self.shallow_conv(x) # Initial convolution
|
| 101 |
+
deep_feature = self.residual_in_residual(shallow_feature) # Residual in Residual
|
| 102 |
+
upscaled_image = self.upscaling_module(deep_feature) # Upscaling module
|
| 103 |
+
reconstructed_image = self.reconstruction_conv(upscaled_image) # Reconstruction
|
| 104 |
+
|
| 105 |
+
return reconstructed_image
|
models/RCAN/rcan_checkpoint.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:60d3235f16777e31b98266bdf9e4bae13d0ede40edde176c1ea768c54ad737e6
|
| 3 |
+
size 39983995
|