Spaces:
Paused
Paused
Kastg
commited on
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,30 +1,39 @@
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from llama_cpp import Llama
|
| 3 |
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
def generate(message, history,temperature=0.3,max_tokens=512):
|
| 7 |
-
system_prompt = "You are OpenChat, an userful AI assistant."
|
| 8 |
-
formatted_prompt = [{"role": "system", "content": system_prompt}]
|
| 9 |
-
for user_prompt, bot_response in history:
|
| 10 |
-
formatted_prompt.append({"role": "user", "content": user_prompt})
|
| 11 |
-
formatted_prompt.append({"role": "assistant", "content": bot_response })
|
| 12 |
-
formatted_prompt.append({"role": "user", "content": message})
|
| 13 |
-
stream_response = llm.create_chat_completion(messages=formatted_prompt, temperature=temperature, max_tokens=max_tokens, stream=True)
|
| 14 |
-
response = ""
|
| 15 |
-
for chunk in stream_response:
|
| 16 |
-
if len(chunk['choices'][0]["delta"]) != 0 and "content" in chunk['choices'][0]["delta"]:
|
| 17 |
-
response += chunk['choices'][0]["delta"]["content"]
|
| 18 |
-
yield response
|
| 19 |
|
| 20 |
-
|
| 21 |
-
avatar_images=["user.png", "botoc.png"], bubble_full_width=False, show_label=False, show_copy_button=True, likeable=True,)
|
| 22 |
-
|
| 23 |
-
iface = gr.ChatInterface(fn=generate, chatbot=mychatbot, retry_btn=None, undo_btn=None)
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
-
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI, HTTPException, Request
|
| 2 |
+
from fastapi.responses import JSONResponse
|
| 3 |
import gradio as gr
|
|
|
|
| 4 |
|
| 5 |
+
app = FastAPI()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
+
llm = gr.Llama(model_path="model.gguf", n_ctx=4000, n_threads=2, chat_format="chatml")
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
+
@app.post("/api/v1/chat")
|
| 10 |
+
async def chat_post(request: Request):
|
| 11 |
+
data = await request.json()
|
| 12 |
+
message = data.get("message")
|
| 13 |
+
history = data.get("history", [])
|
| 14 |
+
temperature = data.get("temperature", 0.3)
|
| 15 |
+
max_tokens = data.get("max_tokens", 512)
|
| 16 |
|
| 17 |
+
async def generate():
|
| 18 |
+
system_prompt = "You are OpenChat, a useful AI assistant."
|
| 19 |
+
formatted_prompt = [{"role": "system", "content": system_prompt}]
|
| 20 |
+
for user_prompt, bot_response in history:
|
| 21 |
+
formatted_prompt.append({"role": "user", "content": user_prompt})
|
| 22 |
+
formatted_prompt.append({"role": "assistant", "content": bot_response })
|
| 23 |
+
formatted_prompt.append({"role": "user", "content": message})
|
| 24 |
+
stream_response = llm.create_chat_completion(messages=formatted_prompt, temperature=temperature, max_tokens=max_tokens, stream=True)
|
| 25 |
+
response = ""
|
| 26 |
+
for chunk in stream_response:
|
| 27 |
+
if len(chunk['choices'][0]["delta"]) != 0 and "content" in chunk['choices'][0]["delta"]:
|
| 28 |
+
response += chunk['choices'][0]["delta"]["content"]
|
| 29 |
+
yield response
|
| 30 |
+
|
| 31 |
+
return JSONResponse(content={"response": await generate()})
|
| 32 |
+
|
| 33 |
+
@app.get("/api/v1/chat")
|
| 34 |
+
async def chat_get():
|
| 35 |
+
return {"message": "Send a POST request to this endpoint to chat."}
|
| 36 |
+
|
| 37 |
+
if __name__ == "__main__":
|
| 38 |
+
import uvicorn
|
| 39 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|