MillanK commited on
Commit
6b98b5d
·
1 Parent(s): 5451bb1
Files changed (2) hide show
  1. app.py +174 -4
  2. img_utils.py +233 -0
app.py CHANGED
@@ -1,7 +1,177 @@
1
  import gradio as gr
 
 
 
 
 
 
 
 
 
2
 
3
- def greet(name):
4
- return "Hello " + name + "!!"
5
 
6
- demo = gr.Interface(fn=greet, inputs="text", outputs="text")
7
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration
3
+ from transformers.image_utils import load_image
4
+ import torch
5
+ import spaces
6
+ import re
7
+ import base64
8
+ from PIL import Image, ImageDraw
9
+ from io import BytesIO
10
+ from img_utils import smart_resize
11
 
12
+ SYS_PROMPT = """You are a helpful assistant.
 
13
 
14
+ # Tools
15
+
16
+ You may call one or more functions to assist with the user query.
17
+
18
+ You are provided with function signatures within <tools></tools> XML tags:
19
+ <tools>
20
+ {{"type": "function", "function": {{"name": "computer_use", "description": "Use a mouse and keyboard to interact with a computer, and take screenshots.\n* This is an interface to a desktop GUI. You do not have access to a terminal or applications menu. You must click on desktop icons to start applications.\n* Some applications may take time to start or process actions, so you may need to wait and take successive screenshots to see the results of your actions. E.g. if you click on Firefox and a window doesn't open, try wait and taking another screenshot.\n* The screen's resolution is {width}x{height}.\n* Whenever you intend to move the cursor to click on an element like an icon, you should consult a screenshot to determine the coordinates of the element before moving the cursor.\n* If you tried clicking on a program or link but it failed to load, even after waiting, try adjusting your cursor position so that the tip of the cursor visually falls on the element that you want to click.\n* Make sure to click any buttons, links, icons, etc with the cursor tip in the center of the element. Don't click boxes on their edges unless asked.", "parameters": {{"properties": {{"action": {{"description": "The action to perform. The available actions are:\n* `key`: Performs key down presses on the arguments passed in order, then performs key releases in reverse order.\n* `type`: Type a string of text on the keyboard.\n* `mouse_move`: Move the cursor to a specified (x, y) pixel coordinate on the screen.\n* `left_click`: Click the left mouse button.\n* `left_click_drag`: Click and drag the cursor to a specified (x, y) pixel coordinate on the screen.\n* `right_click`: Click the right mouse button.\n* `middle_click`: Click the middle mouse button.\n* `double_click`: Double-click the left mouse button.\n* `scroll`: Performs a scroll of the mouse scroll wheel.\n* `wait`: Wait specified seconds for the change to happen.\n* `terminate`: Terminate the current task and report its completion status.", "enum": ["key", "type", "mouse_move", "left_click", "left_click_drag", "right_click", "middle_click", "double_click", "scroll", "wait", "terminate"], "type": "string"}}, "keys": {{"description": "Required only by `action=key`.", "type": "array"}}, "text": {{"description": "Required only by `action=type`.", "type": "string"}}, "coordinate": {{"description": "(x, y): The x (pixels from the left edge) and y (pixels from the top edge) coordinates to move the mouse to. Required only by `action=mouse_move`, `action=left_click_drag`, `action=left_click`, `action=right_click`, `action=double_click`.", "type": "array"}}, "pixels": {{"description": "The amount of scrolling to perform. Positive values scroll up, negative values scroll down. Required only by `action=scroll`.", "type": "number"}}, "time": {{"description": "The seconds to wait. Required only by `action=wait`.", "type": "number"}}, "status": {{"description": "The status of the task. Required only by `action=terminate`.", "type": "string", "enum": ["success", "failure"]}}}}, "required": ["action"], "type": "object"}}}}}}
21
+ </tools>
22
+
23
+ For each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:
24
+ <tool_call>
25
+ {{"name": <function-name>, "arguments": <args-json-object>}}
26
+ </tool_call>
27
+ """
28
+
29
+ MODEL_ID = "xlangai/Jedi-7B-1080p"
30
+ processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
31
+ model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
32
+ MODEL_ID,
33
+ trust_remote_code=True,
34
+ torch_dtype=torch.bfloat16
35
+ ).to("cuda").eval()
36
+
37
+ def image_to_base64(image):
38
+ buffered = BytesIO()
39
+ image.save(buffered, format="PNG")
40
+ img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
41
+ return img_str
42
+
43
+ def draw_bounding_boxes(image, bounding_boxes, outline_color="red", line_width=2):
44
+ draw = ImageDraw.Draw(image)
45
+ for box in bounding_boxes:
46
+ xmin, ymin, xmax, ymax = box
47
+ draw.rectangle([xmin, ymin, xmax, ymax], outline=outline_color, width=line_width)
48
+ return image
49
+
50
+ def rescale_bounding_boxes(bounding_boxes, original_width, original_height, scaled_width=1000, scaled_height=1000):
51
+ x_scale = original_width / scaled_width
52
+ y_scale = original_height / scaled_height
53
+ rescaled_boxes = []
54
+ for box in bounding_boxes:
55
+ xmin, ymin, xmax, ymax = box
56
+ rescaled_box = [
57
+ xmin * x_scale,
58
+ ymin * y_scale,
59
+ xmax * x_scale,
60
+ ymax * y_scale
61
+ ]
62
+ rescaled_boxes.append(rescaled_box)
63
+ return rescaled_boxes
64
+
65
+ def parse_coordinates(response):
66
+ try:
67
+ action = json.loads(
68
+ response.split("<tool_call>\n")[1].split("\n</tool_call>")[0]
69
+ )
70
+ action_name = action["name"]
71
+ action_type = action["arguments"]["action"]
72
+
73
+ print(f"action_name: {action_name}, action_type: {action_type}")
74
+
75
+ if action_type == "wait":
76
+ return [-1, -1, -1, -1]
77
+
78
+ action_args = action["arguments"]["coordinate"]
79
+
80
+ # Return as [x1, y1, x2, y2] format for bounding box
81
+ return [action_args[0], action_args[1], action_args[0], action_args[1]]
82
+ except Exception as e:
83
+ print(f"Error parsing coordinates: {e}\nResponse: {response}")
84
+ return None
85
+
86
+ @spaces.GPU
87
+ def run_inference(image, text_input):
88
+ if image is None:
89
+ return "Please upload an image", "", None
90
+
91
+ if not text_input:
92
+ text_input = "Describe this image in detail"
93
+
94
+ width, height = smart_resize(image.height, image.width)
95
+
96
+ messages = [
97
+ {
98
+ "role": "system",
99
+ "content": SYS_PROMPT.format(width=width, height=height)
100
+ },
101
+ {
102
+ "role": "user",
103
+ "content": [
104
+ {"type": "image", "image": image},
105
+ {"type": "text", "text": text_input},
106
+ ],
107
+ }
108
+ ]
109
+
110
+ text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
111
+ inputs = processor(
112
+ text=[text],
113
+ images=[image],
114
+ return_tensors="pt",
115
+ padding=True,
116
+ ).to("cuda")
117
+
118
+ generated_ids = model.generate(**inputs, max_new_tokens=512)
119
+ generated_ids_trimmed = [
120
+ out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
121
+ ]
122
+ output_text = processor.batch_decode(
123
+ generated_ids_trimmed, skip_special_tokens=False, clean_up_tokenization_spaces=False
124
+ )[0]
125
+
126
+ try:
127
+ # Parse coordinates using the function from the reference code
128
+ coordinates = parse_coordinates(full_response)
129
+
130
+ if coordinates is None:
131
+ return f"Failed to parse coordinates from response: {output_text}", "", image
132
+
133
+ if coordinates == [-1, -1, -1, -1]:
134
+ return "Task deemed infeasible by the model (wait action returned)", "", image
135
+
136
+ # Create a bounding box with a small area around the click point
137
+ click_x, click_y = coordinates[0], coordinates[1]
138
+ box_size = 20 # 20px box around the click point
139
+ box = [
140
+ click_x - box_size/2,
141
+ click_y - box_size/2,
142
+ click_x + box_size/2,
143
+ click_y + box_size/2
144
+ ]
145
+
146
+ # Draw the bounding box on the image
147
+ annotated_image = draw_bounding_boxes(image.copy(), [box])
148
+
149
+ return f"Click coordinates: ({click_x}, {click_y})", str(coordinates), annotated_image
150
+
151
+ css = """
152
+ #output {
153
+ height: 500px;
154
+ overflow: auto;
155
+ border: 1px solid #ccc;
156
+ }
157
+ """
158
+
159
+ with gr.Blocks(css=css) as demo:
160
+ gr.Markdown(
161
+ """
162
+ # Qwen2.5-VL Image Element Locator
163
+ Upload an image and provide a description of an element to locate.
164
+ """)
165
+ with gr.Row():
166
+ with gr.Column():
167
+ input_img = gr.Image(label="Input Image", type="pil")
168
+ text_input = gr.Textbox(label="User Prompt (e.g., 'select search textfield')")
169
+ submit_btn = gr.Button(value="Submit")
170
+ with gr.Column():
171
+ model_output_text = gr.Textbox(label="Model Output Text", lines=5)
172
+ model_output_box = gr.Textbox(label="Coordinates", lines=2)
173
+ annotated_image = gr.Image(label="Annotated Image")
174
+
175
+ submit_btn.click(run_inference, [input_img, text_input], [model_output_text, model_output_box, annotated_image])
176
+
177
+ demo.launch(debug=True)
img_utils.py ADDED
@@ -0,0 +1,233 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from typing import List, Union, Dict, Any
3
+
4
+
5
+ def round_by_factor(number: int, factor: int) -> int:
6
+ """返回最接近 number 的且能被 factor 整除的整数"""
7
+ return round(number / factor) * factor
8
+
9
+
10
+ def ceil_by_factor(number: int, factor: int) -> int:
11
+ """返回大于等于 number 的且能被 factor 整除的整数"""
12
+ return math.ceil(number / factor) * factor
13
+
14
+
15
+ def floor_by_factor(number: int, factor: int) -> int:
16
+ """返回小于等于 number 的且能被 factor 整除的整数"""
17
+ return math.floor(number / factor) * factor
18
+
19
+
20
+ def smart_resize(height, width, factor=28, min_pixels=56 * 56, max_pixels=14 * 14 * 4 * 1280, max_long_side=8192):
21
+ """缩放后图片满足以下条件:
22
+ 1. 长宽能被 factor 整除
23
+ 2. pixels 总数被限制在 [min_pixels, max_pixels] 内
24
+ 3. 最长边限制在 max_long_side 内
25
+ 4. 保证其长宽比基本不变
26
+ """
27
+ if height < 2 or width < 2:
28
+ raise ValueError(f"height:{height} or width:{width} must be larger than factor:{factor}")
29
+ elif max(height, width) / min(height, width) > 200:
30
+ raise ValueError(f"absolute aspect ratio must be smaller than 100, got {height} / {width}")
31
+
32
+ if max(height, width) > max_long_side:
33
+ beta = max(height, width) / max_long_side
34
+ height, width = int(height / beta), int(width / beta)
35
+
36
+ h_bar = round_by_factor(height, factor)
37
+ w_bar = round_by_factor(width, factor)
38
+ if h_bar * w_bar > max_pixels:
39
+ beta = math.sqrt((height * width) / max_pixels)
40
+ h_bar = floor_by_factor(height / beta, factor)
41
+ w_bar = floor_by_factor(width / beta, factor)
42
+ elif h_bar * w_bar < min_pixels:
43
+ beta = math.sqrt(min_pixels / (height * width))
44
+ h_bar = ceil_by_factor(height * beta, factor)
45
+ w_bar = ceil_by_factor(width * beta, factor)
46
+ return h_bar, w_bar
47
+
48
+
49
+ def update_image_size_(image_ele: dict, min_tokens=1, max_tokens=12800, merge_base=2, patch_size=14):
50
+ """根据 min_tokens, max_tokens 更新 image_ele 的尺寸信息
51
+
52
+ Args:
53
+ image_ele (dict):
54
+ - image_ele["image"]: str 图片路径
55
+ - image_ele["height"]: int 图片原始高度
56
+ - image_ele["width"]: int 图片原始宽度
57
+
58
+ Returns:
59
+ 更新后的 image_ele, 新增如下 key-value pair
60
+ dict:
61
+ - image_ele["resized_height"]: int 输入到模型的真实高度
62
+ - image_ele["resized_width"]: int 输入到模型的真实宽度
63
+ - image_ele["seq_len"]: int 输入到模型所占的序列长度
64
+ """
65
+ height, width = image_ele["height"], image_ele["width"]
66
+ pixels_per_token = patch_size * patch_size * merge_base * merge_base
67
+ resized_height, resized_width = smart_resize(
68
+ height,
69
+ width,
70
+ factor=merge_base * patch_size,
71
+ min_pixels=pixels_per_token * min_tokens,
72
+ max_pixels=pixels_per_token * max_tokens,
73
+ max_long_side=50000,
74
+ )
75
+ image_ele.update(
76
+ {
77
+ "resized_height": resized_height,
78
+ "resized_width": resized_width,
79
+ "seq_len": resized_height * resized_width // pixels_per_token + 2,
80
+ }
81
+ )
82
+ return image_ele
83
+
84
+
85
+ def _convert_bbox_format_from_abs_origin(bbox, image_ele: dict, *, tgt_format: str):
86
+ x1, y1, x2, y2 = bbox
87
+ if tgt_format == "abs_origin":
88
+ new_bbox = [int(x1), int(y1), int(x2), int(y2)]
89
+ elif tgt_format == "abs_resized":
90
+ new_bbox = [
91
+ int(x1 / image_ele["width"] * image_ele["resized_width"]),
92
+ int(y1 / image_ele["height"] * image_ele["resized_height"]),
93
+ int(x2 / image_ele["width"] * image_ele["resized_width"]),
94
+ int(y2 / image_ele["height"] * image_ele["resized_height"]),
95
+ ]
96
+ elif tgt_format == "qwen-vl":
97
+ new_bbox = [
98
+ int(x1 / image_ele["width"] * 999),
99
+ int(y1 / image_ele["height"] * 999),
100
+ int(x2 / image_ele["width"] * 999),
101
+ int(y2 / image_ele["height"] * 999),
102
+ ]
103
+ elif tgt_format == "rel":
104
+ new_bbox = [
105
+ float(x1 / image_ele["width"]),
106
+ float(y1 / image_ele["height"]),
107
+ float(x2 / image_ele["width"]),
108
+ float(y2 / image_ele["height"]),
109
+ ]
110
+ elif tgt_format == "molmo":
111
+ new_bbox = [
112
+ round(x1 / image_ele["width"] * 100, ndigits=1),
113
+ round(y1 / image_ele["height"] * 100, ndigits=1),
114
+ round(x2 / image_ele["width"] * 100, ndigits=1),
115
+ round(y2 / image_ele["height"] * 100, ndigits=1),
116
+ ]
117
+ else:
118
+ assert False, f"Unknown tgt_format: {tgt_format}"
119
+ return new_bbox
120
+
121
+
122
+ def _convert_bbox_format_to_abs_origin(bbox, image_ele: dict, *, src_format: str):
123
+ x1, y1, x2, y2 = bbox
124
+ if src_format == "abs_origin":
125
+ new_bbox = [int(x1), int(y1), int(x2), int(y2)]
126
+ elif src_format == "abs_resized":
127
+ new_bbox = [
128
+ int(x1 / image_ele["resized_width"] * image_ele["width"]),
129
+ int(y1 / image_ele["resized_height"] * image_ele["height"]),
130
+ int(x2 / image_ele["resized_width"] * image_ele["width"]),
131
+ int(y2 / image_ele["resized_height"] * image_ele["height"]),
132
+ ]
133
+ elif src_format == "qwen-vl":
134
+ new_bbox = [
135
+ int(x1 / 999 * image_ele["width"]),
136
+ int(y1 / 999 * image_ele["height"]),
137
+ int(x2 / 999 * image_ele["width"]),
138
+ int(y2 / 999 * image_ele["height"]),
139
+ ]
140
+ elif src_format == "rel":
141
+ new_bbox = [
142
+ int(x1 * image_ele["width"]),
143
+ int(y1 * image_ele["height"]),
144
+ int(x2 * image_ele["width"]),
145
+ int(y2 * image_ele["height"]),
146
+ ]
147
+ elif src_format == "molmo":
148
+ new_bbox = [
149
+ int(x1 / 100 * image_ele["width"]),
150
+ int(y1 / 100 * image_ele["height"]),
151
+ int(x2 / 100 * image_ele["width"]),
152
+ int(y2 / 100 * image_ele["height"]),
153
+ ]
154
+ else:
155
+ assert False, f"Unknown src_format: {src_format}"
156
+ return new_bbox
157
+
158
+
159
+ def convert_bbox_format(bbox, image_ele: dict, *, src_format: str, tgt_format: str):
160
+ bbox_abs_origin = _convert_bbox_format_to_abs_origin(bbox, image_ele, src_format=src_format)
161
+ bbox_tgt_format = _convert_bbox_format_from_abs_origin(bbox_abs_origin, image_ele, tgt_format=tgt_format)
162
+ return bbox_tgt_format
163
+
164
+
165
+ def _convert_point_format_from_abs_origin(point, image_ele: dict, *, tgt_format: str):
166
+ x, y = point
167
+ if tgt_format == "abs_origin":
168
+ new_point = [int(x), int(y)]
169
+ elif tgt_format == "abs_resized":
170
+ new_point = [
171
+ int(x / image_ele["width"] * image_ele["resized_width"]),
172
+ int(y / image_ele["height"] * image_ele["resized_height"]),
173
+ ]
174
+ elif tgt_format == "qwen-vl":
175
+ new_point = [
176
+ int(x / image_ele["width"] * 999),
177
+ int(y / image_ele["height"] * 999),
178
+ ]
179
+ elif tgt_format == "rel":
180
+ new_point = [
181
+ float(x / image_ele["width"]),
182
+ float(y / image_ele["height"]),
183
+ ]
184
+ elif tgt_format == "molmo":
185
+ new_point = [
186
+ round(x / image_ele["width"] * 100, ndigits=1),
187
+ round(y / image_ele["height"] * 100, ndigits=1),
188
+ ]
189
+ else:
190
+ assert False, f"Unknown tgt_format: {tgt_format}"
191
+ return new_point
192
+
193
+
194
+ def _convert_point_format_to_abs_origin(point, image_ele: dict, *, src_format: str):
195
+ x, y = point
196
+ if src_format == "abs_origin":
197
+ new_point = [int(x), int(y)]
198
+ elif src_format == "abs_resized":
199
+ new_point = [
200
+ int(x / image_ele["resized_width"] * image_ele["width"]),
201
+ int(y / image_ele["resized_height"] * image_ele["height"]),
202
+ ]
203
+ elif src_format == "qwen-vl":
204
+ new_point = [
205
+ int(x / 999 * image_ele["width"]),
206
+ int(y / 999 * image_ele["height"]),
207
+ ]
208
+ elif src_format == "rel":
209
+ new_point = [
210
+ int(x * image_ele["width"]),
211
+ int(y * image_ele["height"]),
212
+ ]
213
+ elif src_format == "molmo":
214
+ new_point = [
215
+ int(x / 100 * image_ele["width"]),
216
+ int(y / 100 * image_ele["height"]),
217
+ ]
218
+ else:
219
+ assert False, f"Unknown src_format: {src_format}"
220
+ return new_point
221
+
222
+
223
+ def convert_point_format(point, image_ele: dict, *, src_format: str, tgt_format: str):
224
+ point_abs_origin = _convert_point_format_to_abs_origin(point, image_ele, src_format=src_format)
225
+ point_tgt_format = _convert_point_format_from_abs_origin(point_abs_origin, image_ele, tgt_format=tgt_format)
226
+ return point_tgt_format
227
+
228
+
229
+ __all__ = [
230
+ "update_image_size_",
231
+ "convert_bbox_format",
232
+ "convert_point_format",
233
+ ]