Spaces:
Sleeping
Sleeping
File size: 14,658 Bytes
9da12e6 5950325 5a92002 9da12e6 5e912ef a5a188c 5e912ef aac4197 9da12e6 a5a188c 9da12e6 aac4197 9da12e6 e7b5e83 9072d4f 9da12e6 0823edb c306f27 aac4197 9da12e6 5e912ef 9da12e6 a5a188c 9da12e6 aac4197 9da12e6 a2eff80 aac4197 a2eff80 c306f27 9da12e6 aac4197 c306f27 a2eff80 aac4197 a2eff80 c306f27 9da12e6 c306f27 9da12e6 a5a188c 9da12e6 a5a188c 9da12e6 aac4197 a2eff80 0823edb 9da12e6 fae9b87 a2eff80 aac4197 9b1b13f aac4197 9b1b13f 9da12e6 0823edb 9da12e6 e7b5e83 9da12e6 e7b5e83 9da12e6 9b1b13f 9da12e6 a5a188c 9da12e6 5e912ef 5a92002 5e912ef aac4197 5e912ef a5a188c 5e912ef 9da12e6 e7b5e83 9da12e6 e7b5e83 9da12e6 a5a188c 9da12e6 e7b5e83 9da12e6 a5a188c 9da12e6 e7b5e83 9da12e6 5a92002 0823edb 5e912ef 9da12e6 5a92002 e03711d a2eff80 c306f27 e03711d a2eff80 aac4197 0823edb aac4197 9da12e6 5e912ef 5a92002 9da12e6 e7b5e83 9da12e6 5a92002 9da12e6 5e912ef 5a92002 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 |
from __future__ import annotations
from pathlib import Path
from typing import List, Optional, Dict, Any, Iterable, Union, Tuple
import os
import re
import json
import smtplib
import threading
from email.mime.text import MIMEText
from dataclasses import dataclass
try:
from PIL import Image # type: ignore
except Exception:
Image = None
try:
import pytesseract # type: ignore
except Exception:
pytesseract = None
try:
import yaml # type: ignore
except Exception:
yaml = None
COMPANY_NAME_DEFAULT = "Berkshire Hathaway HomeServices Beazley, REALTORS"
COMPANY_PHONES_DEFAULT = ["7068631775", "8032337111"]
DISCLAIMER_DEFAULT = (
"©2025 BHH Affiliates, LLC. An independently owned and operated franchisee of BHH Affiliates, LLC. "
"Berkshire Hathaway HomeServices and the Berkshire Hathaway HomeServices symbol are registered service marks "
"of Columbia Insurance Company, a Berkshire Hathaway affiliate. Equal Housing Opportunity."
)
REQUIRE_DISCLAIMER_ON_NON_SOCIAL = os.getenv("REQUIRE_DISCLAIMER_ON_NON_SOCIAL", "1") == "1"
USE_TINY_ML = os.getenv("USE_TINY_ML", "1") == "1"
HF_REPO = os.getenv("HF_REPO", "tlogandesigns/fairhousing-bert-tiny")
HF_THRESH = float(os.getenv("HF_THRESH", "0.75"))
ML_POSITIVE_LABELS = {
s.strip().lower()
for s in re.split(r"\s*,\s*", os.getenv("ML_POSITIVE_LABELS", "Potential Violation,violation,positive,LABEL_1,1"))
if s.strip()
}
BASE_DIR = Path(__file__).parent
PHRASES_PATH = Path(os.getenv("PHRASES_PATH", str(BASE_DIR / "phrases.yaml")))
EMAIL_ON_FAILURE = os.getenv("EMAIL_ON_FAILURE", "0") == "1"
SMTP_SERVER = os.getenv("SMTP_SERVER")
SMTP_PORT = int(os.getenv("SMTP_PORT", 587))
SMTP_USER = os.getenv("SMTP_USER")
SMTP_PASSWORD = os.getenv("SMTP_PASSWORD")
EMAIL_RECIPIENT = os.getenv("EMAIL_RECIPIENT")
PHONE_RE = re.compile(r"\+?1?\D*([2-9]\d{2})\D*(\d{3})\D*(\d{4})")
def normalize_phone(s: str) -> str:
digits = re.sub(r"\D", "", s or "")
if len(digits) == 11 and digits.startswith("1"):
digits = digits[1:]
return digits
def count_phone_instances(text: str, target_numbers: Iterable[str]) -> int:
targets = {normalize_phone(n) for n in (target_numbers or []) if n}
count = 0
for m in PHONE_RE.finditer(text or ""):
num = "".join(m.groups())
if num in targets:
count += 1
return count
def escape_name_regex(name: str) -> str:
parts = [re.escape(p) for p in (name or "").split() if p]
if not parts:
return r""
return r"\b" + r"[\s\-.,]+".join(parts) + r"\b"
def count_name_instances(text: str, name: str) -> int:
if not (name or "").strip():
return 0
pattern = re.compile(escape_name_regex(name), re.IGNORECASE)
return len(pattern.findall(text or ""))
def contains_disclaimer(text: str, disclaimer: str) -> bool:
if not disclaimer:
return False
def squeeze(s: str) -> str:
return re.sub(r"\s+", " ", s or "").strip().lower()
return squeeze(disclaimer) in squeeze(text)
@dataclass
class Rule:
regex: re.Pattern
category: str
suggests: list[str]
PHRASE_RULES: list[Rule] = []
PHRASES_ERROR: Optional[str] = None
if yaml:
try:
text = Path(PHRASES_PATH).read_text(encoding="utf-8")
data = yaml.safe_load(text) or {}
if isinstance(data, dict) and "categories" in data:
cats = data["categories"] or {}
for cat_name, cfg in cats.items():
if not isinstance(cfg, dict):
continue
pats = cfg.get("patterns") or []
suggests = cfg.get("suggest") or []
for rx in pats:
if isinstance(rx, str):
PHRASE_RULES.append(
Rule(
regex=re.compile(rx, re.IGNORECASE),
category=str(cat_name),
suggests=[str(s) for s in suggests if isinstance(s, str)],
)
)
else:
pats = (data or {}).get("patterns") or []
for rx in pats:
if isinstance(rx, str):
PHRASE_RULES.append(
Rule(
regex=re.compile(rx, re.IGNORECASE),
category="Uncategorized",
suggests=[],
)
)
except FileNotFoundError:
PHRASES_ERROR = f"phrases.yaml not found at {PHRASES_PATH}"
except Exception as e:
PHRASES_ERROR = f"phrases.yaml load/parse error: {e}"
hf_pipe = None
if USE_TINY_ML:
try:
os.environ.setdefault("TOKENIZERS_PARALLELISM", "false")
from transformers import pipeline # type: ignore
hf_pipe = pipeline("text-classification", model=HF_REPO)
try:
import torch
torch.set_grad_enabled(False)
try:
threads = max(1, (os.cpu_count() or 2) // 2)
torch.set_num_threads(threads)
except Exception:
pass
try:
from torch.ao.quantization import quantize_dynamic
hf_pipe.model.eval()
hf_pipe.model = quantize_dynamic(hf_pipe.model, {torch.nn.Linear}, dtype=torch.qint8)
except Exception:
pass
except Exception:
pass
try:
_ = hf_pipe("warmup")
except Exception:
pass
except Exception as e:
raise RuntimeError(
f"USE_TINY_ML=1 but Transformers/model failed to load: {e}. "
"Check requirements.txt, apt.txt, HF_REPO, and network."
)
def _violation_score(pipe, text: str) -> float:
try:
preds = pipe(text, return_all_scores=True)
scores = {str(d["label"]).lower(): float(d["score"]) for d in preds[0]}
except TypeError:
preds = pipe(text)
if isinstance(preds, list) and preds:
p = preds[0]
label = str(p.get("label", "")).lower()
score = float(p.get("score", 0.0))
if label in ML_POSITIVE_LABELS:
return score
return score
return 0.0
except Exception:
return 0.0
for name in ML_POSITIVE_LABELS:
if name in scores:
return scores[name]
if "non-violation" in scores:
return 1.0 - scores["non-violation"]
candidates = {k: v for k, v in scores.items() if any(tok in k for tok in ("violat", "posit", "flag", "risk", "unsafe", "toxic"))}
if candidates:
return max(candidates.values())
return max(scores.values()) if scores else 0.0
def fair_housing_flags(text: str) -> List[str]:
flags: List[str] = []
t = (text or "")[:1500]
for rule in PHRASE_RULES:
for _m in rule.regex.finditer(t):
if rule.suggests:
for s in rule.suggests:
flags.append(f"{rule.category}: {s}")
else:
flags.append(rule.category)
if hf_pipe:
try:
score = _violation_score(hf_pipe, t)
if score >= HF_THRESH:
flags.append(f"MLFlag: model={HF_REPO} score={score:.2f}")
except Exception as e:
flags.append(f"MLFlag: inference error: {e}")
return flags
def evaluate_section(
text: str,
social: bool,
company_name: str,
company_phones: List[str],
agent_name: str,
agent_phone: str,
disclaimer: str,
require_disclaimer_on_non_social: bool,
) -> Dict[str, Any]:
flags: List[str] = []
company_name_count = count_name_instances(text, company_name)
agent_name_count = count_name_instances(text, agent_name)
office_phone_count = count_phone_instances(text, company_phones)
agent_phone_count = count_phone_instances(text, [agent_phone] if agent_phone else [])
name_equal = company_name_count == agent_name_count
phone_equal = office_phone_count == agent_phone_count
disclaimer_ok = True
if (not social) and require_disclaimer_on_non_social:
disclaimer_ok = contains_disclaimer(text, disclaimer)
if not disclaimer_ok:
flags.append("Missing disclaimer on non-social content")
if not name_equal:
flags.append(
f"Name imbalance: company={company_name_count} vs agent={agent_name_count}"
)
if not phone_equal:
flags.append(
f"Phone imbalance: office={office_phone_count} vs agent={agent_phone_count}"
)
compliant = name_equal and phone_equal and disclaimer_ok
return {
"compliant": compliant,
"Flags": flags,
}
def ocr_image(image: Union["Image.Image", bytes, None]) -> str:
if image is None or pytesseract is None:
return ""
try:
if isinstance(image, bytes):
if Image is None:
return ""
from io import BytesIO
image = Image.open(BytesIO(image)).convert("RGB")
if Image is not None:
img = image.copy()
try:
img.thumbnail((1600, 1600))
except Exception:
pass
try:
return pytesseract.image_to_string(img, config="--psm 6 -l eng") # type: ignore[arg-type]
except Exception:
return pytesseract.image_to_string(img) # type: ignore[arg-type]
return pytesseract.image_to_string(image) # type: ignore[arg-type]
except Exception:
return ""
def find_rule_matches(text: str) -> Tuple[List[Dict[str, Any]], List[Tuple[int, int, str]]]:
text = text or ""
findings: List[Dict[str, Any]] = []
spans: List[Tuple[int, int, str]] = []
for rule in PHRASE_RULES:
for m in rule.regex.finditer(text):
s, e = m.span()
snippet = text[max(0, s - 40): min(len(text), e + 40)]
findings.append({
"category": rule.category,
"match": m.group(0),
"start": s,
"end": e,
"context": snippet,
"suggestions": (rule.suggests or [])[:3],
})
spans.append((s, e, rule.category))
return findings, spans
def send_email_notification(results: Dict[str, Any]):
if not EMAIL_ON_FAILURE or not SMTP_SERVER or not EMAIL_RECIPIENT:
return
is_compliant = (
results.get("Fair_Housing", {}).get("compliant", True)
and results.get("img", {}).get("compliant", True)
and results.get("Ptxt", {}).get("compliant", True)
)
if is_compliant:
return
subject = "Compliance Check Failed"
body = f"""
A compliance check has failed.
Results:
{json.dumps(results, indent=2)}
"""
msg = MIMEText(body)
msg["Subject"] = subject
msg["From"] = SMTP_USER or "[email protected]"
msg["To"] = EMAIL_RECIPIENT
def _worker():
try:
with smtplib.SMTP(SMTP_SERVER, SMTP_PORT) as server:
server.starttls()
if SMTP_USER and SMTP_PASSWORD:
server.login(SMTP_USER, SMTP_PASSWORD)
server.sendmail(SMTP_USER or "[email protected]", [EMAIL_RECIPIENT], msg.as_string())
except Exception:
pass
threading.Thread(target=_worker, daemon=True).start()
def run_check(
image: Optional["Image.Image"],
ptxt: str,
social: bool,
agent_name: str,
agent_phone: str,
*,
company_name: str = COMPANY_NAME_DEFAULT,
company_phones: Optional[List[str]] = None,
disclaimer: str = DISCLAIMER_DEFAULT,
require_disclaimer_on_non_social: Optional[bool] = None,
) -> Dict[str, Any]:
company_phones = company_phones or COMPANY_PHONES_DEFAULT
if require_disclaimer_on_non_social is None:
require_disclaimer_on_non_social = REQUIRE_DISCLAIMER_ON_NON_SOCIAL
itxt = ocr_image(image)
ptxt = (ptxt or "")[:1500]
content = "\n\n".join(x for x in [itxt, ptxt, f"Social={social}"] if x)
fh_flags = fair_housing_flags(content)
fair_housing_block = {"compliant": len(fh_flags) == 0, "Flags": fh_flags}
img_block = evaluate_section(
text=itxt,
social=social,
company_name=company_name,
company_phones=company_phones,
agent_name=agent_name,
agent_phone=agent_phone,
disclaimer=disclaimer,
require_disclaimer_on_non_social=require_disclaimer_on_non_social,
)
ptxt_block = evaluate_section(
text=ptxt,
social=social,
company_name=company_name,
company_phones=company_phones,
agent_name=agent_name,
agent_phone=agent_phone,
disclaimer=disclaimer,
require_disclaimer_on_non_social=require_disclaimer_on_non_social,
)
img_findings, img_spans = find_rule_matches(itxt)
ptxt_findings, ptxt_spans = find_rule_matches(ptxt)
model_labels = []
try:
if hf_pipe is not None and hasattr(hf_pipe, "model") and hasattr(hf_pipe.model, "config"):
labels_map = getattr(hf_pipe.model.config, "id2label", {}) or {}
model_labels = list(labels_map.values())
except Exception:
model_labels = []
results = {
"Fair_Housing": fair_housing_block,
"img": img_block,
"Ptxt": ptxt_block,
"RuleMatches": {
"img": {"findings": img_findings, "spans": img_spans},
"ptxt": {"findings": ptxt_findings, "spans": ptxt_spans},
},
"Diagnostics": {
"USE_TINY_ML": USE_TINY_ML,
"HF_REPO": HF_REPO,
"HF_THRESH": HF_THRESH,
"PhrasesLoaded": len(PHRASE_RULES),
"PhrasesPath": str(PHRASES_PATH),
"PhrasesError": PHRASES_ERROR,
"OCR": pytesseract is not None,
"Categories": sorted({r.category for r in PHRASE_RULES}),
"DisclaimerRequiredOnNonSocial": REQUIRE_DISCLAIMER_ON_NON_SOCIAL,
"ModelLabels": model_labels,
"MLPositiveLabels": sorted(list(ML_POSITIVE_LABELS)),
},
}
send_email_notification(results)
return results
__all__ = [
"COMPANY_NAME_DEFAULT",
"COMPANY_PHONES_DEFAULT",
"DISCLAIMER_DEFAULT",
"REQUIRE_DISCLAIMER_ON_NON_SOCIAL",
"USE_TINY_ML",
"HF_REPO",
"HF_THRESH",
"PHRASES_PATH",
"count_phone_instances",
"count_name_instances",
"contains_disclaimer",
"fair_housing_flags",
"evaluate_section",
"ocr_image",
"find_rule_matches",
"run_check",
"send_email_notification",
]
|