Spaces:
Runtime error
Runtime error
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from torch.nn.utils import weight_norm | |
| from .Modules.ASR.models import ASRCNN | |
| from .Modules.JDC.model import JDCNet | |
| from .Modules.discriminators import MultiPeriodDiscriminator, MultiResSpecDiscriminator | |
| import math | |
| from munch import Munch | |
| class LearnedDownSample(nn.Module): | |
| def __init__(self, layer_type, dim_in): | |
| super().__init__() | |
| self.layer_type = layer_type | |
| if self.layer_type == 'none': | |
| self.conv = nn.Identity() | |
| elif self.layer_type == 'timepreserve': | |
| self.conv = nn.Conv2d(dim_in, dim_in, kernel_size=(3, 1), stride=(2, 1), groups=dim_in, padding=(1, 0)) | |
| elif self.layer_type == 'half': | |
| self.conv = nn.Conv2d(dim_in, dim_in, kernel_size=(3, 3), stride=(2, 2), groups=dim_in, padding=1) | |
| else: | |
| raise RuntimeError('Got unexpected donwsampletype %s, expected is [none, timepreserve, half]' % self.layer_type) | |
| def forward(self, x): | |
| return self.conv(x) | |
| class LearnedUpSample(nn.Module): | |
| def __init__(self, layer_type, dim_in): | |
| super().__init__() | |
| self.layer_type = layer_type | |
| if self.layer_type == 'none': | |
| self.conv = nn.Identity() | |
| elif self.layer_type == 'timepreserve': | |
| self.conv = nn.ConvTranspose2d(dim_in, dim_in, kernel_size=(3, 1), stride=(2, 1), groups=dim_in, output_padding=(1, 0), padding=(1, 0)) | |
| elif self.layer_type == 'half': | |
| self.conv = nn.ConvTranspose2d(dim_in, dim_in, kernel_size=(3, 3), stride=(2, 2), groups=dim_in, output_padding=1, padding=1) | |
| else: | |
| raise RuntimeError('Got unexpected upsampletype %s, expected is [none, timepreserve, half]' % self.layer_type) | |
| def forward(self, x): | |
| return self.conv(x) | |
| class DownSample(nn.Module): | |
| def __init__(self, layer_type): | |
| super().__init__() | |
| self.layer_type = layer_type | |
| def forward(self, x): | |
| if self.layer_type == 'none': | |
| return x | |
| elif self.layer_type == 'timepreserve': | |
| return F.avg_pool2d(x, (2, 1)) | |
| elif self.layer_type == 'half': | |
| if x.shape[-1] % 2 != 0: | |
| x = torch.cat([x, x[..., -1].unsqueeze(-1)], dim=-1) | |
| return F.avg_pool2d(x, 2) | |
| else: | |
| raise RuntimeError('Got unexpected donwsampletype %s, expected is [none, timepreserve, half]' % self.layer_type) | |
| class UpSample(nn.Module): | |
| def __init__(self, layer_type): | |
| super().__init__() | |
| self.layer_type = layer_type | |
| def forward(self, x): | |
| if self.layer_type == 'none': | |
| return x | |
| elif self.layer_type == 'timepreserve': | |
| return F.interpolate(x, scale_factor=(2, 1), mode='nearest') | |
| elif self.layer_type == 'half': | |
| return F.interpolate(x, scale_factor=2, mode='nearest') | |
| else: | |
| raise RuntimeError('Got unexpected upsampletype %s, expected is [none, timepreserve, half]' % self.layer_type) | |
| class ResBlk(nn.Module): | |
| def __init__(self, dim_in, dim_out, actv=nn.LeakyReLU(0.2), | |
| normalize=False, downsample='none'): | |
| super().__init__() | |
| self.actv = actv | |
| self.normalize = normalize | |
| self.downsample = DownSample(downsample) | |
| self.downsample_res = LearnedDownSample(downsample, dim_in) | |
| self.learned_sc = dim_in != dim_out | |
| self._build_weights(dim_in, dim_out) | |
| def _build_weights(self, dim_in, dim_out): | |
| self.conv1 = nn.Conv2d(dim_in, dim_in, 3, 1, 1) | |
| self.conv2 = nn.Conv2d(dim_in, dim_out, 3, 1, 1) | |
| if self.normalize: | |
| self.norm1 = nn.InstanceNorm2d(dim_in, affine=True) | |
| self.norm2 = nn.InstanceNorm2d(dim_in, affine=True) | |
| if self.learned_sc: | |
| self.conv1x1 = nn.Conv2d(dim_in, dim_out, 1, 1, 0, bias=False) | |
| def _shortcut(self, x): | |
| if self.learned_sc: | |
| x = self.conv1x1(x) | |
| if self.downsample: | |
| x = self.downsample(x) | |
| return x | |
| def _residual(self, x): | |
| if self.normalize: | |
| x = self.norm1(x) | |
| x = self.actv(x) | |
| x = self.conv1(x) | |
| x = self.downsample_res(x) | |
| if self.normalize: | |
| x = self.norm2(x) | |
| x = self.actv(x) | |
| x = self.conv2(x) | |
| return x | |
| def forward(self, x): | |
| x = self._shortcut(x) + self._residual(x) | |
| return x / math.sqrt(2) # unit variance | |
| class StyleEncoder(nn.Module): | |
| def __init__(self, dim_in=48, style_dim=48, max_conv_dim=384): | |
| super().__init__() | |
| blocks = [] | |
| blocks += [nn.Conv2d(1, dim_in, 3, 1, 1)] | |
| repeat_num = 4 | |
| for _ in range(repeat_num): | |
| dim_out = min(dim_in*2, max_conv_dim) | |
| blocks += [ResBlk(dim_in, dim_out, downsample='half')] | |
| dim_in = dim_out | |
| blocks += [nn.LeakyReLU(0.2)] | |
| blocks += [nn.Conv2d(dim_out, dim_out, 5, 1, 0)] | |
| blocks += [nn.AdaptiveAvgPool2d(1)] | |
| blocks += [nn.LeakyReLU(0.2)] | |
| self.shared = nn.Sequential(*blocks) | |
| self.unshared = nn.Linear(dim_out, style_dim) | |
| def forward(self, x): | |
| h = self.shared(x) | |
| h = h.view(h.size(0), -1) | |
| s = self.unshared(h) | |
| return s | |
| class LinearNorm(torch.nn.Module): | |
| def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'): | |
| super(LinearNorm, self).__init__() | |
| self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias) | |
| torch.nn.init.xavier_uniform_( | |
| self.linear_layer.weight, | |
| gain=torch.nn.init.calculate_gain(w_init_gain)) | |
| def forward(self, x): | |
| return self.linear_layer(x) | |
| class ResBlk1d(nn.Module): | |
| def __init__(self, dim_in, dim_out, actv=nn.LeakyReLU(0.2), | |
| normalize=False, downsample='none', dropout_p=0.2): | |
| super().__init__() | |
| self.actv = actv | |
| self.normalize = normalize | |
| self.downsample_type = downsample | |
| self.learned_sc = dim_in != dim_out | |
| self._build_weights(dim_in, dim_out) | |
| self.dropout_p = dropout_p | |
| if self.downsample_type == 'none': | |
| self.pool = nn.Identity() | |
| else: | |
| self.pool = weight_norm(nn.Conv1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1)) | |
| def _build_weights(self, dim_in, dim_out): | |
| self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_in, 3, 1, 1)) | |
| self.conv2 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1)) | |
| if self.normalize: | |
| self.norm1 = nn.InstanceNorm1d(dim_in, affine=True) | |
| self.norm2 = nn.InstanceNorm1d(dim_in, affine=True) | |
| if self.learned_sc: | |
| self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False)) | |
| def downsample(self, x): | |
| if self.downsample_type == 'none': | |
| return x | |
| else: | |
| if x.shape[-1] % 2 != 0: | |
| x = torch.cat([x, x[..., -1].unsqueeze(-1)], dim=-1) | |
| return F.avg_pool1d(x, 2) | |
| def _shortcut(self, x): | |
| if self.learned_sc: | |
| x = self.conv1x1(x) | |
| x = self.downsample(x) | |
| return x | |
| def _residual(self, x): | |
| if self.normalize: | |
| x = self.norm1(x) | |
| x = self.actv(x) | |
| x = F.dropout(x, p=self.dropout_p, training=self.training) | |
| x = self.conv1(x) | |
| x = self.pool(x) | |
| if self.normalize: | |
| x = self.norm2(x) | |
| x = self.actv(x) | |
| x = F.dropout(x, p=self.dropout_p, training=self.training) | |
| x = self.conv2(x) | |
| return x | |
| def forward(self, x): | |
| x = self._shortcut(x) + self._residual(x) | |
| return x / math.sqrt(2) # unit variance | |
| class LayerNorm(nn.Module): | |
| def __init__(self, channels, eps=1e-5): | |
| super().__init__() | |
| self.channels = channels | |
| self.eps = eps | |
| self.gamma = nn.Parameter(torch.ones(channels)) | |
| self.beta = nn.Parameter(torch.zeros(channels)) | |
| def forward(self, x): | |
| x = x.transpose(1, -1) | |
| x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps) | |
| return x.transpose(1, -1) | |
| class TextEncoder(nn.Module): | |
| def __init__(self, channels, kernel_size, depth, n_symbols, actv=nn.LeakyReLU(0.2)): | |
| super().__init__() | |
| self.embedding = nn.Embedding(n_symbols, channels) | |
| padding = (kernel_size - 1) // 2 | |
| self.cnn = nn.ModuleList() | |
| for _ in range(depth): | |
| self.cnn.append(nn.Sequential( | |
| weight_norm(nn.Conv1d(channels, channels, kernel_size=kernel_size, padding=padding)), | |
| LayerNorm(channels), | |
| actv, | |
| nn.Dropout(0.2), | |
| )) | |
| # self.cnn = nn.Sequential(*self.cnn) | |
| self.lstm = nn.LSTM(channels, channels//2, 1, batch_first=True, bidirectional=True) | |
| def forward(self, x, input_lengths, m): | |
| x = self.embedding(x) # [B, T, emb] | |
| x = x.transpose(1, 2) # [B, emb, T] | |
| m = m.to(input_lengths.device).unsqueeze(1) | |
| x.masked_fill_(m, 0.0) | |
| for c in self.cnn: | |
| x = c(x) | |
| x.masked_fill_(m, 0.0) | |
| x = x.transpose(1, 2) # [B, T, chn] | |
| input_lengths = input_lengths.cpu() | |
| x = nn.utils.rnn.pack_padded_sequence( | |
| x, input_lengths, batch_first=True, enforce_sorted=False) | |
| self.lstm.flatten_parameters() | |
| x, _ = self.lstm(x) | |
| x, _ = nn.utils.rnn.pad_packed_sequence( | |
| x, batch_first=True) | |
| x = x.transpose(-1, -2) | |
| x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]]) | |
| x_pad[:, :, :x.shape[-1]] = x | |
| x = x_pad.to(x.device) | |
| x.masked_fill_(m, 0.0) | |
| return x | |
| def inference(self, x): | |
| x = self.embedding(x) | |
| x = x.transpose(1, 2) | |
| x = self.cnn(x) | |
| x = x.transpose(1, 2) | |
| self.lstm.flatten_parameters() | |
| x, _ = self.lstm(x) | |
| return x | |
| def length_to_mask(self, lengths): | |
| mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths) | |
| mask = torch.gt(mask+1, lengths.unsqueeze(1)) | |
| return mask | |
| class AdaIN1d(nn.Module): | |
| def __init__(self, style_dim, num_features): | |
| super().__init__() | |
| self.norm = nn.InstanceNorm1d(num_features, affine=False) | |
| self.fc = nn.Linear(style_dim, num_features*2) | |
| def forward(self, x, s): | |
| h = self.fc(s) | |
| h = h.view(h.size(0), h.size(1), 1) | |
| gamma, beta = torch.chunk(h, chunks=2, dim=1) | |
| return (1 + gamma) * self.norm(x) + beta | |
| class UpSample1d(nn.Module): | |
| def __init__(self, layer_type): | |
| super().__init__() | |
| self.layer_type = layer_type | |
| def forward(self, x): | |
| if self.layer_type == 'none': | |
| return x | |
| else: | |
| return F.interpolate(x, scale_factor=2, mode='nearest') | |
| class AdainResBlk1d(nn.Module): | |
| def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2), | |
| upsample='none', dropout_p=0.0): | |
| super().__init__() | |
| self.actv = actv | |
| self.upsample_type = upsample | |
| self.upsample = UpSample1d(upsample) | |
| self.learned_sc = dim_in != dim_out | |
| self._build_weights(dim_in, dim_out, style_dim) | |
| self.dropout = nn.Dropout(dropout_p) | |
| if upsample == 'none': | |
| self.pool = nn.Identity() | |
| else: | |
| self.pool = weight_norm(nn.ConvTranspose1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1)) | |
| def _build_weights(self, dim_in, dim_out, style_dim): | |
| self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1)) | |
| self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1)) | |
| self.norm1 = AdaIN1d(style_dim, dim_in) | |
| self.norm2 = AdaIN1d(style_dim, dim_out) | |
| if self.learned_sc: | |
| self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False)) | |
| def _shortcut(self, x): | |
| x = self.upsample(x) | |
| if self.learned_sc: | |
| x = self.conv1x1(x) | |
| return x | |
| def _residual(self, x, s): | |
| x = self.norm1(x, s) | |
| x = self.actv(x) | |
| x = self.pool(x) | |
| x = self.conv1(self.dropout(x)) | |
| x = self.norm2(x, s) | |
| x = self.actv(x) | |
| x = self.conv2(self.dropout(x)) | |
| return x | |
| def forward(self, x, s): | |
| out = self._residual(x, s) | |
| out = (out + self._shortcut(x)) / math.sqrt(2) | |
| return out | |
| class AdaLayerNorm(nn.Module): | |
| def __init__(self, style_dim, channels, eps=1e-5): | |
| super().__init__() | |
| self.channels = channels | |
| self.eps = eps | |
| self.fc = nn.Linear(style_dim, channels*2) | |
| def forward(self, x, s): | |
| x = x.transpose(-1, -2) | |
| x = x.transpose(1, -1) | |
| h = self.fc(s) | |
| h = h.view(h.size(0), h.size(1), 1) | |
| gamma, beta = torch.chunk(h, chunks=2, dim=1) | |
| gamma, beta = gamma.transpose(1, -1), beta.transpose(1, -1) | |
| x = F.layer_norm(x, (self.channels,), eps=self.eps) | |
| x = (1 + gamma) * x + beta | |
| return x.transpose(1, -1).transpose(-1, -2) | |
| class ProsodyPredictor(nn.Module): | |
| def __init__(self, style_dim, d_hid, nlayers, max_dur=50, dropout=0.1): | |
| super().__init__() | |
| self.text_encoder = DurationEncoder(sty_dim=style_dim, | |
| d_model=d_hid, | |
| nlayers=nlayers, | |
| dropout=dropout) | |
| self.lstm = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True) | |
| self.duration_proj = LinearNorm(d_hid, max_dur) | |
| self.shared = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True) | |
| self.F0 = nn.ModuleList() | |
| self.F0.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout)) | |
| self.F0.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout)) | |
| self.F0.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout)) | |
| self.N = nn.ModuleList() | |
| self.N.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout)) | |
| self.N.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout)) | |
| self.N.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout)) | |
| self.F0_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0) | |
| self.N_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0) | |
| def forward(self, texts, style, text_lengths, alignment, m): | |
| d = self.text_encoder(texts, style, text_lengths, m) | |
| # predict duration | |
| input_lengths = text_lengths.cpu() | |
| x = nn.utils.rnn.pack_padded_sequence( | |
| d, input_lengths, batch_first=True, enforce_sorted=False) | |
| m = m.to(text_lengths.device).unsqueeze(1) | |
| self.lstm.flatten_parameters() | |
| x, _ = self.lstm(x) | |
| x, _ = nn.utils.rnn.pad_packed_sequence( | |
| x, batch_first=True) | |
| x_pad = torch.zeros([x.shape[0], m.shape[-1], x.shape[-1]]) | |
| x_pad[:, :x.shape[1], :] = x | |
| x = x_pad.to(x.device) | |
| duration = self.duration_proj(nn.functional.dropout(x, 0.5, training=self.training)) | |
| en = (d.transpose(-1, -2) @ alignment) | |
| return duration.squeeze(-1), en | |
| def F0Ntrain(self, x, s): | |
| x, _ = self.shared(x.transpose(-1, -2)) | |
| F0 = x.transpose(-1, -2) | |
| for block in self.F0: | |
| F0 = block(F0, s) | |
| F0 = self.F0_proj(F0) | |
| N = x.transpose(-1, -2) | |
| for block in self.N: | |
| N = block(N, s) | |
| N = self.N_proj(N) | |
| return F0.squeeze(1), N.squeeze(1) | |
| def length_to_mask(self, lengths): | |
| mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths) | |
| mask = torch.gt(mask+1, lengths.unsqueeze(1)) | |
| return mask | |
| class DurationEncoder(nn.Module): | |
| def __init__(self, sty_dim, d_model, nlayers, dropout=0.1): | |
| super().__init__() | |
| self.lstms = nn.ModuleList() | |
| for _ in range(nlayers): | |
| self.lstms.append(nn.LSTM(d_model + sty_dim, | |
| d_model // 2, | |
| num_layers=1, | |
| batch_first=True, | |
| bidirectional=True, | |
| dropout=dropout)) | |
| self.lstms.append(AdaLayerNorm(sty_dim, d_model)) | |
| self.dropout = dropout | |
| self.d_model = d_model | |
| self.sty_dim = sty_dim | |
| def forward(self, x, style, text_lengths, m): | |
| masks = m.to(text_lengths.device) | |
| x = x.permute(2, 0, 1) | |
| s = style.expand(x.shape[0], x.shape[1], -1) | |
| x = torch.cat([x, s], axis=-1) | |
| x.masked_fill_(masks.unsqueeze(-1).transpose(0, 1), 0.0) | |
| x = x.transpose(0, 1) | |
| input_lengths = text_lengths.cpu() | |
| x = x.transpose(-1, -2) | |
| for block in self.lstms: | |
| if isinstance(block, AdaLayerNorm): | |
| x = block(x.transpose(-1, -2), style).transpose(-1, -2) | |
| x = torch.cat([x, s.permute(1, -1, 0)], axis=1) | |
| x.masked_fill_(masks.unsqueeze(-1).transpose(-1, -2), 0.0) | |
| else: | |
| x = x.transpose(-1, -2) | |
| x = nn.utils.rnn.pack_padded_sequence( | |
| x, input_lengths, batch_first=True, enforce_sorted=False) | |
| block.flatten_parameters() | |
| x, _ = block(x) | |
| x, _ = nn.utils.rnn.pad_packed_sequence( | |
| x, batch_first=True) | |
| x = F.dropout(x, p=self.dropout, training=self.training) | |
| x = x.transpose(-1, -2) | |
| x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]]) | |
| x_pad[:, :, :x.shape[-1]] = x | |
| x = x_pad.to(x.device) | |
| return x.transpose(-1, -2) | |
| def inference(self, x, style): | |
| x = self.embedding(x.transpose(-1, -2)) * math.sqrt(self.d_model) | |
| style = style.expand(x.shape[0], x.shape[1], -1) | |
| x = torch.cat([x, style], axis=-1) | |
| src = self.pos_encoder(x) | |
| output = self.transformer_encoder(src).transpose(0, 1) | |
| return output | |
| def length_to_mask(self, lengths): | |
| mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths) | |
| mask = torch.gt(mask+1, lengths.unsqueeze(1)) | |
| return mask | |
| def build_model(args): | |
| assert args.decoder.type in ['istftnet', 'hifigan', 'vocos'], 'Decoder type unknown' | |
| if args.decoder.type == "istftnet": | |
| from Modules.istftnet import Decoder | |
| decoder = Decoder(dim_in=args.hidden_dim, style_dim=args.style_dim, dim_out=args.n_mels, | |
| resblock_kernel_sizes = args.decoder.resblock_kernel_sizes, | |
| upsample_rates = args.decoder.upsample_rates, | |
| upsample_initial_channel=args.decoder.upsample_initial_channel, | |
| resblock_dilation_sizes=args.decoder.resblock_dilation_sizes, | |
| upsample_kernel_sizes=args.decoder.upsample_kernel_sizes, | |
| gen_istft_n_fft=args.decoder.gen_istft_n_fft, gen_istft_hop_size=args.decoder.gen_istft_hop_size) | |
| elif args.decoder.type == "hifigan": | |
| from Modules.hifigan import Decoder | |
| decoder = Decoder(dim_in=args.hidden_dim, style_dim=args.style_dim, dim_out=args.n_mels, | |
| resblock_kernel_sizes = args.decoder.resblock_kernel_sizes, | |
| upsample_rates = args.decoder.upsample_rates, | |
| upsample_initial_channel=args.decoder.upsample_initial_channel, | |
| resblock_dilation_sizes=args.decoder.resblock_dilation_sizes, | |
| upsample_kernel_sizes=args.decoder.upsample_kernel_sizes) | |
| elif args.decoder.type == "vocos": | |
| from Modules.vocos import Decoder | |
| decoder = Decoder(dim_in=args.hidden_dim, style_dim=args.style_dim, dim_out=args.n_mels, | |
| intermediate_dim=args.decoder.intermediate_dim, | |
| num_layers=args.decoder.num_layers, | |
| gen_istft_n_fft=args.decoder.gen_istft_n_fft, | |
| gen_istft_hop_size=args.decoder.gen_istft_hop_size) | |
| nets = Munch( | |
| decoder = decoder, | |
| predictor = ProsodyPredictor(style_dim=args.style_dim, d_hid=args.hidden_dim, nlayers=args.n_layer, max_dur=args.max_dur, dropout=args.dropout), | |
| text_encoder = TextEncoder(channels=args.hidden_dim, kernel_size=5, depth=args.n_layer, n_symbols=args.n_token), | |
| style_encoder = StyleEncoder(dim_in=args.dim_in, style_dim=args.style_dim, max_conv_dim=args.hidden_dim),# acoustic style encoder | |
| text_aligner = ASRCNN(input_dim=args.ASR_params.input_dim, hidden_dim=args.ASR_params.hidden_dim, n_token=args.n_token, | |
| n_layers=args.ASR_params.n_layers, token_embedding_dim=args.ASR_params.token_embedding_dim), #ASR | |
| pitch_extractor = JDCNet(num_class=args.JDC_params.num_class, seq_len=args.JDC_params.seq_len), #F0 | |
| mpd = MultiPeriodDiscriminator(), | |
| msd = MultiResSpecDiscriminator(), | |
| ) | |
| return nets | |
| def load_checkpoint(model, optimizer, path, load_only_params=True, ignore_modules=[], freeze_modules=[]): | |
| print("\n") | |
| state = torch.load(path, map_location='cpu') | |
| params = state['net'] | |
| for key in model: | |
| loaded_keys = list(params[key].keys()) | |
| loaded_has_module = loaded_keys[0].startswith('module.') | |
| model_keys = list(model[key].state_dict().keys()) | |
| model_has_module = model_keys[0].startswith('module.') | |
| if key in params and key not in ignore_modules: | |
| try: | |
| model[key].load_state_dict(params[key], strict=True) | |
| except Exception as e: | |
| from collections import OrderedDict | |
| state_dict = params[key] | |
| new_state_dict = OrderedDict() | |
| if not loaded_has_module and model_has_module: | |
| print("Loading non-DP weights into DP model") | |
| #Add module | |
| for k, v in state_dict.items(): | |
| # If key already has module. leave it otherwise add it | |
| new_key = k if k.startswith('module.') else 'module.' + k | |
| new_state_dict[new_key] = v | |
| model[key].load_state_dict(new_state_dict, strict=True)# load params | |
| elif loaded_has_module and not model_has_module: | |
| print("Loading DP weights into non-DP model") | |
| #Remove module | |
| for k, v in state_dict.items(): | |
| name = k[7:] # remove `module.` | |
| new_state_dict[name] = v | |
| model[key].load_state_dict(new_state_dict, strict=True)# load params | |
| else: | |
| print(e) | |
| print('%s Loaded' % key) | |
| if key in freeze_modules: | |
| for param in model[key].parameters(): | |
| param.requires_grad = False | |
| print('%s Freezed' % key) | |
| if key in ignore_modules: | |
| print('%s Ignored' % key) | |
| _ = [model[key].eval() for key in model] | |
| if not load_only_params: | |
| print('\nLoading old optimizer') | |
| epoch = state["epoch"] | |
| iters = state["iters"] | |
| optimizer.load_state_dict(state["optimizer"]) | |
| else: | |
| print('\nNOT Loading old optimizer') | |
| epoch = 0 | |
| iters = 0 | |
| return model, optimizer, epoch, iters | |