Update app.py
Browse files
app.py
CHANGED
|
@@ -1,19 +1,16 @@
|
|
| 1 |
-
import
|
| 2 |
-
import
|
| 3 |
-
import
|
| 4 |
import gradio as gr
|
| 5 |
-
|
| 6 |
from huggingface_hub import hf_hub_download
|
| 7 |
-
from llama_cpp import Llama
|
| 8 |
-
from datetime import datetime
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
|
|
|
| 13 |
|
| 14 |
-
model_path_file = hf_hub_download(MODEL_ID, filename=MODEL_FILE)
|
| 15 |
|
| 16 |
-
# Initialize Llama model
|
| 17 |
llama = Llama(
|
| 18 |
model_path=model_path_file,
|
| 19 |
n_gpu_layers=40, # Adjust based on VRAM
|
|
@@ -23,17 +20,15 @@ llama = Llama(
|
|
| 23 |
verbose=True # Enable debug logging
|
| 24 |
)
|
| 25 |
|
| 26 |
-
|
| 27 |
-
CONTEXT_LENGTH = 4096
|
| 28 |
-
COLOR = "blue"
|
| 29 |
-
EMOJI = "💬"
|
| 30 |
-
DESCRIPTION = "Urdu AI Chatbot powered by Llama.cpp"
|
| 31 |
|
| 32 |
-
# Function to generate
|
| 33 |
-
def
|
| 34 |
-
|
| 35 |
-
response = llama(chat_prompt, max_tokens=max_new_tokens, stop=["Q:", "\n"], echo=False, stream=True)
|
| 36 |
|
|
|
|
|
|
|
|
|
|
| 37 |
text = ""
|
| 38 |
for chunk in response:
|
| 39 |
content = chunk["choices"][0]["text"]
|
|
@@ -41,81 +36,15 @@ def generate_response(message, history, system_prompt, temperature, max_new_toke
|
|
| 41 |
text += content
|
| 42 |
yield text
|
| 43 |
|
| 44 |
-
# Create Gradio interface
|
| 45 |
-
with gr.Blocks() as demo:
|
| 46 |
-
chatbot = gr.Chatbot(label="Urdu Chatbot", likeable=True, render=False)
|
| 47 |
-
chat = gr.ChatInterface(
|
| 48 |
-
generate_response,
|
| 49 |
-
chatbot=chatbot,
|
| 50 |
-
title=EMOJI + " " + "Alif-1.0 Chatbot",
|
| 51 |
-
description=DESCRIPTION,
|
| 52 |
-
examples=[
|
| 53 |
-
["شہر کراچی کے بارے میں بتاؤ"],
|
| 54 |
-
["قابل تجدید توانائی کیا ہے؟"],
|
| 55 |
-
["پاکستان کی تاریخ کے بارے میں بتائیں۔"]
|
| 56 |
-
],
|
| 57 |
-
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
|
| 58 |
-
additional_inputs=[
|
| 59 |
-
gr.Textbox("", label="System prompt", render=False),
|
| 60 |
-
gr.Slider(0, 1, 0.6, label="Temperature", render=False),
|
| 61 |
-
gr.Slider(128, CONTEXT_LENGTH, 1024, label="Max new tokens", render=False),
|
| 62 |
-
gr.Slider(1, 80, 40, step=1, label="Top K sampling", render=False),
|
| 63 |
-
gr.Slider(0, 2, 1.1, label="Repetition penalty", render=False),
|
| 64 |
-
gr.Slider(0, 1, 0.95, label="Top P sampling", render=False),
|
| 65 |
-
],
|
| 66 |
-
theme=gr.themes.Soft(primary_hue=COLOR),
|
| 67 |
-
)
|
| 68 |
-
|
| 69 |
-
demo.queue(max_size=20).launch(share=True)
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
# import llama_cpp
|
| 73 |
-
# from llama_cpp import Llama
|
| 74 |
-
# # import llama_cpp.llama_tokenizer
|
| 75 |
-
# import gradio as gr
|
| 76 |
-
|
| 77 |
-
# from huggingface_hub import hf_hub_download
|
| 78 |
-
|
| 79 |
-
# model_name = "large-traversaal/Alif-1.0-8B-Instruct"
|
| 80 |
-
# model_file = "model-Q8_0.gguf"
|
| 81 |
-
# model_path_file = hf_hub_download(model_name,
|
| 82 |
-
# filename=model_file,)
|
| 83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
-
#
|
| 86 |
-
|
| 87 |
-
# n_gpu_layers=40, # Adjust based on VRAM
|
| 88 |
-
# n_threads=8, # Match CPU cores
|
| 89 |
-
# n_batch=512, # Optimize for better VRAM usage
|
| 90 |
-
# n_ctx=4096, # Context window size
|
| 91 |
-
# verbose=True # Enable debug logging
|
| 92 |
-
# )
|
| 93 |
-
|
| 94 |
-
# chat_prompt = """You are Urdu Chatbot. Write approriate response for given instruction:{inp} Response:"""
|
| 95 |
-
|
| 96 |
-
# # Function to generate text with streaming output
|
| 97 |
-
# def chat_with_ai(prompt):
|
| 98 |
-
# query = chat_prompt.format(inp=prompt)
|
| 99 |
-
|
| 100 |
-
# #response = llama(prompt, max_tokens=1024, stop=stop_tokens, echo=False, stream=True) # Enable streaming
|
| 101 |
-
# response = llama(query, max_tokens=256, stop=["Q:", "\n"], echo=False, stream=True) # Enable streaming
|
| 102 |
-
|
| 103 |
-
# text = ""
|
| 104 |
-
# for chunk in response:
|
| 105 |
-
# content = chunk["choices"][0]["text"]
|
| 106 |
-
# if content:
|
| 107 |
-
# text += content
|
| 108 |
-
# yield text
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
# # Gradio UI setup
|
| 112 |
-
# demo = gr.Interface(
|
| 113 |
-
# fn=chat_with_ai, # Streaming function
|
| 114 |
-
# inputs="text", # User input
|
| 115 |
-
# outputs="text", # Model response
|
| 116 |
-
# title="Streaming Alif-1.0-8B-Instruct Chatbot 🚀",
|
| 117 |
-
# description="Enter a prompt and get a streamed response."
|
| 118 |
-
# )
|
| 119 |
-
|
| 120 |
-
# # Launch the Gradio app
|
| 121 |
-
# demo.launch(share=True)
|
|
|
|
| 1 |
+
import llama_cpp
|
| 2 |
+
from llama_cpp import Llama
|
| 3 |
+
# import llama_cpp.llama_tokenizer
|
| 4 |
import gradio as gr
|
| 5 |
+
|
| 6 |
from huggingface_hub import hf_hub_download
|
|
|
|
|
|
|
| 7 |
|
| 8 |
+
model_name = "large-traversaal/Alif-1.0-8B-Instruct"
|
| 9 |
+
model_file = "model-Q8_0.gguf"
|
| 10 |
+
model_path_file = hf_hub_download(model_name,
|
| 11 |
+
filename=model_file,)
|
| 12 |
|
|
|
|
| 13 |
|
|
|
|
| 14 |
llama = Llama(
|
| 15 |
model_path=model_path_file,
|
| 16 |
n_gpu_layers=40, # Adjust based on VRAM
|
|
|
|
| 20 |
verbose=True # Enable debug logging
|
| 21 |
)
|
| 22 |
|
| 23 |
+
chat_prompt = """You are Urdu Chatbot. Write approriate response for given instruction:{inp} Response:"""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
+
# Function to generate text with streaming output
|
| 26 |
+
def chat_with_ai(prompt):
|
| 27 |
+
query = chat_prompt.format(inp=prompt)
|
|
|
|
| 28 |
|
| 29 |
+
#response = llama(prompt, max_tokens=1024, stop=stop_tokens, echo=False, stream=True) # Enable streaming
|
| 30 |
+
response = llama(query, max_tokens=256, stop=["Q:", "\n"], echo=False, stream=True) # Enable streaming
|
| 31 |
+
|
| 32 |
text = ""
|
| 33 |
for chunk in response:
|
| 34 |
content = chunk["choices"][0]["text"]
|
|
|
|
| 36 |
text += content
|
| 37 |
yield text
|
| 38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
+
# Gradio UI setup
|
| 41 |
+
demo = gr.Interface(
|
| 42 |
+
fn=chat_with_ai, # Streaming function
|
| 43 |
+
inputs="text", # User input
|
| 44 |
+
outputs="text", # Model response
|
| 45 |
+
title="Streaming Alif-1.0-8B-Instruct Chatbot 🚀",
|
| 46 |
+
description="Enter a prompt and get a streamed response."
|
| 47 |
+
)
|
| 48 |
|
| 49 |
+
# Launch the Gradio app
|
| 50 |
+
demo.launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|