Spaces:
Runtime error
Runtime error
import gradio as gr | |
#import peft | |
import transformers | |
device = "cpu" | |
is_peft = False | |
model_id = "treadon/promt-fungineer-355M" | |
# if is_peft: | |
# config = peft.PeftConfig.from_pretrained(model_id) | |
# model = transformers.AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, low_cpu_mem_usage=True) | |
# tokenizer = transformers.AutoTokenizer.from_pretrained(config.base_model_name_or_path) | |
# model = peft.PeftModel.from_pretrained(model, model_id) | |
# else: | |
model = transformers.AutoModelForCausalLM.from_pretrained(model_id, low_cpu_mem_usage=True) | |
tokenizer = transformers.AutoTokenizer.from_pretrained("gpt2") | |
def generate_text(prompt): | |
if not prompt.startswith("BRF:"): | |
prompt = "BRF: " + prompt | |
model.eval() | |
# SOFT SAMPLE | |
inputs = tokenizer(prompt, return_tensors="pt").to(device) | |
samples = [] | |
try: | |
for i in range(1): | |
outputs = model.generate(**inputs, max_length=256, do_sample=True, top_k=100, top_p=0.95, temperature=0.85, num_return_sequences=4, pad_token_id=tokenizer.eos_token_id) | |
for output in outputs: | |
sample = tokenizer.decode(output, skip_special_tokens=True) | |
samples.append(sample) | |
except Exception as e: | |
print(e) | |
return samples | |
iface = gr.Interface(fn=generate_text, inputs="text", outputs=("text","text","text","text") ) | |
iface.launch() |