oinolan's picture
add sweeper
de12ca3
raw
history blame
11.4 kB
import warnings
from glob import glob
from pathlib import Path
import numpy as np
import torch
import tyro
from PIL import Image
from scipy.ndimage import binary_erosion, distance_transform_edt
from scipy.stats import ks_2samp
from zea import log
from zea.io_lib import load_image
import fid_score
from plots import plot_metrics
def calculate_fid_score(denoised_image_dirs, ground_truth_dir):
if isinstance(denoised_image_dirs, (str, Path)):
denoised_image_dirs = [denoised_image_dirs]
elif not isinstance(denoised_image_dirs, list):
raise ValueError("Input must be a path or list of paths")
clean_images_folder = glob(str(ground_truth_dir) + "/*.png")
print(f"Looking for clean images in: {ground_truth_dir}")
print(f"Found {len(clean_images_folder)} clean images")
# Determine optimal batch size based on number of images
num_denoised = len(denoised_image_dirs)
num_clean = len(clean_images_folder)
optimal_batch_size = min(8, num_denoised, num_clean)
print(f"Using batch size: {optimal_batch_size}")
with warnings.catch_warnings():
warnings.filterwarnings("ignore", message="os.fork.*JAX is multithreaded")
fid_value = fid_score.calculate_fid_with_cached_ground_truth(
denoised_image_dirs,
clean_images_folder,
batch_size=optimal_batch_size,
device="cuda" if torch.cuda.is_available() else "cpu",
num_workers=2 if torch.cuda.is_available() else 0,
dims=2048,
)
return fid_value
def gcnr(img1, img2):
"""Generalized Contrast-to-Noise Ratio"""
_, bins = np.histogram(np.concatenate((img1, img2)), bins=256)
f, _ = np.histogram(img1, bins=bins, density=True)
g, _ = np.histogram(img2, bins=bins, density=True)
f /= f.sum()
g /= g.sum()
return 1 - np.sum(np.minimum(f, g))
def cnr(img1, img2):
"""Contrast-to-Noise Ratio"""
return (img1.mean() - img2.mean()) / np.sqrt(img1.var() + img2.var())
def calculate_cnr_gcnr(result_dehazed_cardiac_ultrasound, mask_path):
"""
Evaluate gCNR and CNR metrics for denoised images using paired masks.
Saves detailed and summary statistics to Excel.
"""
results = []
mask = np.array(Image.open(mask_path).convert("L"))
roi1_pixels = result_dehazed_cardiac_ultrasound[mask == 255] # Foreground ROI
roi2_pixels = result_dehazed_cardiac_ultrasound[mask == 128] # Background/Noise ROI
gcnr_val = gcnr(roi1_pixels, roi2_pixels)
cnr_val = cnr(roi1_pixels, roi2_pixels)
results.append([cnr_val, gcnr_val])
return results
def calculate_ks_statistics(
result_hazy_cardiac_ultrasound, result_dehazed_cardiac_ultrasound, mask_path
):
mask = np.array(Image.open(mask_path).convert("L"))
roi1_original = result_hazy_cardiac_ultrasound[mask == 255] # region A
roi1_denoised = result_dehazed_cardiac_ultrasound[mask == 255]
roi2_original = result_hazy_cardiac_ultrasound[mask == 128] # region B
roi2_denoised = result_dehazed_cardiac_ultrasound[mask == 128]
roi1_ks_stat, roi1_ks_p_value = (None, None)
roi2_ks_stat, roi2_ks_p_value = (None, None)
if roi1_original.size > 0 and roi1_denoised.size > 0:
roi1_ks_stat, roi1_ks_p_value = ks_2samp(roi1_original, roi1_denoised)
if roi2_original.size > 0 and roi2_denoised.size > 0:
roi2_ks_stat, roi2_ks_p_value = ks_2samp(roi2_original, roi2_denoised)
return roi1_ks_stat, roi1_ks_p_value, roi2_ks_stat, roi2_ks_p_value
def calculate_dice_asd(image_path, label_path, checkpoint_path, image_size=224):
try:
from test import inference # Our Segmentation Method
except ImportError:
raise ImportError(
"Segmentation method not available, skipping Dice/ASD calculation"
)
pred_img = inference(image_path, checkpoint_path, image_size)
pred = np.array(pred_img) > 127
label = Image.open(label_path).convert("L")
label = label.resize((image_size, image_size), Image.NEAREST)
label = np.array(label) > 127
# calculate Dice
intersection = np.logical_and(pred, label).sum()
dice = 2 * intersection / (pred.sum() + label.sum() + 1e-8)
# calculate ASD
if pred.sum() == 0 or label.sum() == 0:
asd = np.nan
else:
pred_dt = distance_transform_edt(~pred)
label_dt = distance_transform_edt(~label)
surface_pred = pred ^ binary_erosion(pred)
surface_label = label ^ binary_erosion(label)
d1 = pred_dt[surface_label].mean()
d2 = label_dt[surface_pred].mean()
asd = (d1 + d2) / 2
return dice, asd
def calculate_final_score(aggregates):
try:
# (FID + CNR + gCNR):(KS^A + KS^B):(Dice + ASD)= 5:3:2
group1_score = 0 # FID + CNR + gCNR
if aggregates.get("fid") is not None:
fid_min = 60.0
fid_max = 150.0
fid_score = (fid_max - aggregates["fid"]) / (fid_max - fid_min)
fid_score = max(0, min(1, fid_score))
group1_score += fid_score * 100 * 0.33
if aggregates.get("cnr_mean") is not None:
cnr_min = 1.0
cnr_max = 1.5
cnr_score = (aggregates["cnr_mean"] - cnr_min) / (cnr_max - cnr_min)
cnr_score = max(0, min(1, cnr_score))
group1_score += cnr_score * 100 * 0.33
if aggregates.get("gcnr_mean") is not None:
gcnr_min = 0.5
gcnr_max = 0.8
gcnr_score = (aggregates["gcnr_mean"] - gcnr_min) / (gcnr_max - gcnr_min)
gcnr_score = max(0, min(1, gcnr_score))
group1_score += gcnr_score * 100 * 0.34
group2_score = 0 # KS^A + KS^B
if aggregates.get("ks_roi1_ksstatistic_mean") is not None:
ks1_min = 0.1
ks1_max = 0.3
ks1_score = (ks1_max - aggregates["ks_roi1_ksstatistic_mean"]) / (
ks1_max - ks1_min
)
ks1_score = max(0, min(1, ks1_score))
group2_score += ks1_score * 100 * 0.5
if aggregates.get("ks_roi2_ksstatistic_mean") is not None:
ks2_min = 0.0
ks2_max = 0.5
ks2_score = (aggregates["ks_roi2_ksstatistic_mean"] - ks2_min) / (
ks2_max - ks2_min
)
ks2_score = max(0, min(1, ks2_score))
group2_score += ks2_score * 100 * 0.5
group3_score = 0 # Dice + ASD
if aggregates.get("dice_mean") is not None:
dice_min = 0.85
dice_max = 0.95
dice_score = (aggregates["dice_mean"] - dice_min) / (dice_max - dice_min)
dice_score = max(0, min(1, dice_score))
group3_score += dice_score * 100 * 0.5
if aggregates.get("asd_mean") is not None:
asd_min = 0.7
asd_max = 2.0
asd_score = (asd_max - aggregates["asd_mean"]) / (asd_max - asd_min)
asd_score = max(0, min(1, asd_score))
group3_score += asd_score * 100 * 0.5
# Final score calculation
final_score = (group1_score * 5 + group2_score * 3 + group3_score * 2) / 10
return final_score
except Exception as e:
print(f"Error calculating final score: {str(e)}")
return 0
def evaluate(folder: str, noisy_folder: str, roi_folder: str, reference_folder: str):
"""Evaluate the dehazing algorithm.
Args:
folder (str): Path to the folder containing the dehazed images.
Used for evaluating all metrics.
noisy_folder (str): Path to the folder containing the noisy images.
Only used for KS statistics.
roi_folder (str): Path to the folder containing the ROI images.
Used for contrast and KS statistic metrics.
reference_folder (str): Path to the folder containing the reference images.
Used only for FID calculation.
"""
folder = Path(folder)
noisy_folder = Path(noisy_folder)
roi_folder = Path(roi_folder)
reference_folder = Path(reference_folder)
folder_files = set(f.name for f in folder.glob("*.png"))
noisy_files = set(f.name for f in noisy_folder.glob("*.png"))
roi_files = set(f.name for f in roi_folder.glob("*.png"))
print(f"Found {len(folder_files)} .png files in output folder: {folder}")
print(f"Found {len(noisy_files)} .png files in noisy folder: {noisy_folder}")
print(f"Found {len(roi_files)} .png files in ROI folder: {roi_folder}")
# Find intersection of filenames
common_files = sorted(folder_files & roi_files & noisy_files)
print(f"Found {len(common_files)} matching images in noisy/dehazed/roi folders")
assert len(common_files) > 0, (
"No matching .png files in all folders. Cannot proceed."
)
metrics = {"CNR": [], "gCNR": [], "KS_A": [], "KS_B": []}
limits = {
"CNR": [1.0, 1.5],
"gCNR": [0.5, 0.8],
"KS_A": [0.1, 0.3],
"KS_B": [0.0, 0.5],
}
for name in common_files:
dehazed_path = folder / name
noisy_path = noisy_folder / name
roi_path = roi_folder / name
try:
img_dehazed = np.array(load_image(str(dehazed_path)))
img_noisy = np.array(load_image(str(noisy_path)))
except Exception as e:
print(f"Error loading image {name}: {e}")
continue
# CNR/gCNR
cnr_gcnr = calculate_cnr_gcnr(img_dehazed, str(roi_path))
metrics["CNR"].append(cnr_gcnr[0][0])
metrics["gCNR"].append(cnr_gcnr[0][1])
# KS statistics
ks_a, _, ks_b, _ = calculate_ks_statistics(
img_noisy, img_dehazed, str(roi_path)
)
metrics["KS_A"].append(ks_a)
metrics["KS_B"].append(ks_b)
# Compute statistics
stats = {
k: (np.mean(v), np.std(v), np.min(v), np.max(v)) for k, v in metrics.items()
}
print("Contrast statistics:")
for k, (mean, std, minv, maxv) in stats.items():
print(f"{k}: mean={mean:.3f}, std={std:.3f}, min={minv:.3f}, max={maxv:.3f}")
fig = plot_metrics(metrics, limits, "contrast_metrics.png")
path = Path("contrast_metrics.png")
save_kwargs = {"bbox_inches": "tight", "dpi": 300}
fig.savefig(path, **save_kwargs)
fig.savefig(path.with_suffix(".pdf"), **save_kwargs)
log.success(f"Metrics plot saved to {log.yellow(path)}")
# Compute FID
fid_image_paths = [str(folder / name) for name in common_files]
fid_score = calculate_fid_score(fid_image_paths, str(reference_folder))
print(f"FID between {folder} and {reference_folder}: {fid_score:.3f}")
# Create aggregates dictionary for final score calculation
aggregates = {
"fid": float(fid_score),
"cnr_mean": float(np.mean(metrics["CNR"])),
"cnr_std": float(np.std(metrics["CNR"])),
"gcnr_mean": float(np.mean(metrics["gCNR"])),
"gcnr_std": float(np.std(metrics["gCNR"])),
"ks_roi1_ksstatistic_mean": float(np.mean(metrics["KS_A"])),
"ks_roi1_ksstatistic_std": float(np.std(metrics["KS_A"])),
"ks_roi2_ksstatistic_mean": float(np.mean(metrics["KS_B"])),
"ks_roi2_ksstatistic_std": float(np.std(metrics["KS_B"])),
}
# Calculate final score
final_score = calculate_final_score(aggregates)
aggregates["final_score"] = float(final_score)
return aggregates
if __name__ == "__main__":
tyro.cli(evaluate)