Spaces:
Sleeping
Sleeping
Upload 4 files
Browse files- Dockerfile +37 -0
- app.py +129 -0
- huggingface.yml +1 -0
- requirements.txt +4 -0
Dockerfile
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Use Python 3.10 slim as base image
|
| 2 |
+
FROM python:3.10-slim
|
| 3 |
+
|
| 4 |
+
# Install OpenJDK 17 (includes javac and libjvm.so)
|
| 5 |
+
RUN apt-get update && \
|
| 6 |
+
apt-get install -y openjdk-17-jdk && \
|
| 7 |
+
apt-get clean && \
|
| 8 |
+
rm -rf /var/lib/apt/lists/*
|
| 9 |
+
|
| 10 |
+
# Find the actual JAVA_HOME path dynamically
|
| 11 |
+
RUN update-alternatives --config java || true
|
| 12 |
+
RUN echo "JAVA_HOME=$(dirname $(dirname $(readlink -f $(which java))))" >> /etc/environment
|
| 13 |
+
|
| 14 |
+
# Set JAVA_HOME and update PATH
|
| 15 |
+
ENV JAVA_HOME=/usr/lib/jvm/java-17-openjdk-amd64
|
| 16 |
+
ENV PATH=$JAVA_HOME/bin:$PATH
|
| 17 |
+
|
| 18 |
+
# Verify Java installation
|
| 19 |
+
RUN echo "Checking Java installation..." && \
|
| 20 |
+
java -version && \
|
| 21 |
+
javac -version && \
|
| 22 |
+
echo "Java installed successfully!"
|
| 23 |
+
|
| 24 |
+
# Set working directory
|
| 25 |
+
WORKDIR /home/user/app
|
| 26 |
+
|
| 27 |
+
# Copy application files
|
| 28 |
+
COPY . .
|
| 29 |
+
|
| 30 |
+
# Install Python dependencies
|
| 31 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
| 32 |
+
|
| 33 |
+
# Expose port for HF Spaces
|
| 34 |
+
EXPOSE 7860
|
| 35 |
+
|
| 36 |
+
# Run the Flask app
|
| 37 |
+
CMD ["python", "app.py"]
|
app.py
ADDED
|
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from flask import Flask, request, jsonify
|
| 2 |
+
from sentence_transformers import CrossEncoder
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
app = Flask(__name__)
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
# Load your cross-encoder model
|
| 10 |
+
model_name = "truong1301/reranker_pho_BLAI" # Replace with your actual model if different
|
| 11 |
+
cross_encoder = CrossEncoder(model_name, max_length=256, num_labels=1)
|
| 12 |
+
|
| 13 |
+
# Function to preprocess text with Vietnamese word segmentation
|
| 14 |
+
def preprocess_text(text):
|
| 15 |
+
if not text:
|
| 16 |
+
return text
|
| 17 |
+
segmented_text = rdrsegmenter.word_segment(text)
|
| 18 |
+
# Join tokenized sentences into a single string
|
| 19 |
+
return " ".join([" ".join(sentence) for sentence in segmented_text])
|
| 20 |
+
|
| 21 |
+
@app.route("/rerank", methods=["POST"])
|
| 22 |
+
def rerank():
|
| 23 |
+
try:
|
| 24 |
+
# Get JSON data from the request (query and list of documents)
|
| 25 |
+
data = request.get_json()
|
| 26 |
+
query = data.get("query", "")
|
| 27 |
+
documents = data.get("documents", [])
|
| 28 |
+
|
| 29 |
+
if not query or not documents:
|
| 30 |
+
return jsonify({"error": "Missing query or documents"}), 400
|
| 31 |
+
|
| 32 |
+
# Create pairs of query and documents for reranking
|
| 33 |
+
query_doc_pairs = [(query, doc) for doc in documents]
|
| 34 |
+
|
| 35 |
+
# Get reranking scores from the cross-encoder
|
| 36 |
+
scores = cross_encoder.predict(query_doc_pairs).tolist()
|
| 37 |
+
|
| 38 |
+
# Combine documents with their scores and sort
|
| 39 |
+
ranked_results = sorted(
|
| 40 |
+
[{"document": doc, "score": score} for doc, score in zip(documents, scores)],
|
| 41 |
+
key=lambda x: x["score"],
|
| 42 |
+
reverse=True
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
return jsonify({"results": ranked_results})
|
| 46 |
+
|
| 47 |
+
except Exception as e:
|
| 48 |
+
return jsonify({"error": str(e)}), 500
|
| 49 |
+
|
| 50 |
+
@app.route("/", methods=["GET"])
|
| 51 |
+
def health_check():
|
| 52 |
+
return jsonify({"status": "Server is running"}), 200
|
| 53 |
+
|
| 54 |
+
if __name__ == "__main__":
|
| 55 |
+
app.run(host="0.0.0.0", port=7860) # Default port for Hugging Face Spaces
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
# from flask import Flask, request, jsonify
|
| 59 |
+
# from transformers import pipeline
|
| 60 |
+
# from sentence_transformers import CrossEncoder
|
| 61 |
+
|
| 62 |
+
# app = Flask(__name__)
|
| 63 |
+
|
| 64 |
+
# # Load Vietnamese word segmentation pipeline
|
| 65 |
+
# segmenter = pipeline("token-classification", model="NlpHUST/vi-word-segmentation")
|
| 66 |
+
|
| 67 |
+
# # Load your cross-encoder model
|
| 68 |
+
# model_name = "truong1301/reranker_pho_BLAI" # Replace with your actual model if different
|
| 69 |
+
# cross_encoder = CrossEncoder(model_name, max_length=256, num_labels=1)
|
| 70 |
+
|
| 71 |
+
# # Function to preprocess text using Vietnamese word segmentation
|
| 72 |
+
# def preprocess_text(text):
|
| 73 |
+
# if not text:
|
| 74 |
+
# return text
|
| 75 |
+
|
| 76 |
+
# ner_results = segmenter(text)
|
| 77 |
+
# segmented_text = ""
|
| 78 |
+
|
| 79 |
+
# for e in ner_results:
|
| 80 |
+
# if "##" in e["word"]:
|
| 81 |
+
# segmented_text += e["word"].replace("##", "")
|
| 82 |
+
# elif e["entity"] == "I":
|
| 83 |
+
# segmented_text += "_" + e["word"]
|
| 84 |
+
# else:
|
| 85 |
+
# segmented_text += " " + e["word"]
|
| 86 |
+
|
| 87 |
+
# return segmented_text.strip()
|
| 88 |
+
|
| 89 |
+
# @app.route("/rerank", methods=["POST"])
|
| 90 |
+
# def rerank():
|
| 91 |
+
# try:
|
| 92 |
+
# # Get JSON data from the request (query and list of documents)
|
| 93 |
+
# data = request.get_json()
|
| 94 |
+
# query = data.get("query", "")
|
| 95 |
+
# documents = data.get("documents", [])
|
| 96 |
+
|
| 97 |
+
# if not query or not documents:
|
| 98 |
+
# return jsonify({"error": "Missing query or documents"}), 400
|
| 99 |
+
|
| 100 |
+
# # Apply Vietnamese word segmentation preprocessing
|
| 101 |
+
# segmented_query = preprocess_text(query)
|
| 102 |
+
# segmented_documents = [preprocess_text(doc) for doc in documents]
|
| 103 |
+
|
| 104 |
+
# # Create pairs of query and documents for reranking
|
| 105 |
+
# query_doc_pairs = [(segmented_query, doc) for doc in segmented_documents]
|
| 106 |
+
|
| 107 |
+
# # Get reranking scores from the cross-encoder
|
| 108 |
+
# scores = cross_encoder.predict(query_doc_pairs).tolist()
|
| 109 |
+
|
| 110 |
+
# # Combine documents with their scores and sort
|
| 111 |
+
# ranked_results = sorted(
|
| 112 |
+
# [{"document": doc, "score": score} for doc, score in zip(documents, scores)],
|
| 113 |
+
# key=lambda x: x["score"],
|
| 114 |
+
# reverse=True
|
| 115 |
+
# )
|
| 116 |
+
|
| 117 |
+
# return jsonify({"results": ranked_results})
|
| 118 |
+
|
| 119 |
+
# except Exception as e:
|
| 120 |
+
# return jsonify({"error": str(e)}), 500
|
| 121 |
+
|
| 122 |
+
# @app.route("/", methods=["GET"])
|
| 123 |
+
# def health_check():
|
| 124 |
+
# return jsonify({"status": "Server is running"}), 200
|
| 125 |
+
|
| 126 |
+
# if __name__ == "__main__":
|
| 127 |
+
# app.run(host="0.0.0.0", port=7860) # Default port for Hugging Face Spaces
|
| 128 |
+
|
| 129 |
+
|
huggingface.yml
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
sdk: docker
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Flask
|
| 2 |
+
sentence-transformers
|
| 3 |
+
transformers
|
| 4 |
+
torch
|