Spaces:
Runtime error
Runtime error
Commit
·
27f94c6
1
Parent(s):
b89ed62
Upload optimizing transformers demo
Browse files- app.py +74 -0
- config.json +3 -0
app.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
import torch
|
5 |
+
from huggingface_hub import hf_hub_download
|
6 |
+
from onnxruntime import InferenceSession
|
7 |
+
from transformers import AutoModelForQuestionAnswering, AutoTokenizer
|
8 |
+
|
9 |
+
models = {
|
10 |
+
"Base model": "bert-large-uncased-whole-word-masking-finetuned-squad",
|
11 |
+
"Prunned model": "madlag/bert-large-uncased-wwm-squadv2-x2.63-f82.6-d16-hybrid-v1",
|
12 |
+
"Prunned ONNX Optimized FP16": "tryolabs/bert-large-uncased-wwm-squadv2-optimized-f16",
|
13 |
+
}
|
14 |
+
|
15 |
+
|
16 |
+
def run_ort_inference(model_name, inputs):
|
17 |
+
model_path = hf_hub_download(repo_id=models[model_name], filename="model.onnx")
|
18 |
+
sess = InferenceSession(model_path, providers=["CPUExecutionProvider"])
|
19 |
+
start_time = time.time()
|
20 |
+
output = sess.run(None, input_feed=inputs)
|
21 |
+
end_time = time.time()
|
22 |
+
return (output[0], output[1]), (end_time - start_time)
|
23 |
+
|
24 |
+
|
25 |
+
def run_normal_hf(model_name, inputs):
|
26 |
+
start_time = time.time()
|
27 |
+
model = AutoModelForQuestionAnswering.from_pretrained(models[model_name])
|
28 |
+
end_time = time.time()
|
29 |
+
return model(**inputs).values(), (end_time - start_time)
|
30 |
+
|
31 |
+
|
32 |
+
def inference(model_name, context, question):
|
33 |
+
tokenizer = AutoTokenizer.from_pretrained(models[model_name])
|
34 |
+
if model_name == "Prunned ONNX Optimized FP16":
|
35 |
+
inputs = dict(tokenizer(question, context, return_tensors="np"))
|
36 |
+
output, inference_time = run_ort_inference(model_name, inputs)
|
37 |
+
answer_start_scores, answer_end_scores = torch.tensor(output[0]), torch.tensor(
|
38 |
+
output[1]
|
39 |
+
)
|
40 |
+
else:
|
41 |
+
inputs = tokenizer(question, context, return_tensors="pt")
|
42 |
+
output, inference_time = run_normal_hf(model_name, inputs)
|
43 |
+
answer_start_scores, answer_end_scores = output
|
44 |
+
|
45 |
+
input_ids = inputs["input_ids"].tolist()[0]
|
46 |
+
answer_start = torch.argmax(answer_start_scores)
|
47 |
+
answer_end = torch.argmax(answer_end_scores) + 1
|
48 |
+
answer = tokenizer.convert_tokens_to_string(
|
49 |
+
tokenizer.convert_ids_to_tokens(input_ids[answer_start:answer_end])
|
50 |
+
)
|
51 |
+
|
52 |
+
return answer, f"{inference_time:.4f}s"
|
53 |
+
|
54 |
+
|
55 |
+
model_field = gr.Dropdown(
|
56 |
+
choices=["Base model", "Prunned model", "Prunned ONNX Optimized FP16"],
|
57 |
+
value="Prunned ONNX Optimized FP16",
|
58 |
+
label="Model",
|
59 |
+
)
|
60 |
+
input_text_field = gr.Textbox(placeholder="Enter the text here", label="Text")
|
61 |
+
input_question_field = gr.Text(placeholder="Enter the question here", label="Question")
|
62 |
+
|
63 |
+
output_model = gr.Text(label="Model output")
|
64 |
+
output_inference_time = gr.Text(label="Inference time in seconds")
|
65 |
+
|
66 |
+
|
67 |
+
demo = gr.Interface(
|
68 |
+
inference,
|
69 |
+
title="Optimizing Transformers - Question Answering Demo",
|
70 |
+
inputs=[model_field, input_text_field, input_question_field],
|
71 |
+
outputs=[output_model, output_inference_time],
|
72 |
+
)
|
73 |
+
|
74 |
+
demo.launch()
|
config.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"transformers_version": "4.5.1"
|
3 |
+
}
|