smallai / app.py
userlollolol1's picture
Update app.py
2e06f96 verified
import os
import gradio as gr
from openai import OpenAI
# Initialize OpenAI client using Hugging Face router
hf_token = os.getenv("apikey") # ensure your HF_TOKEN env var is set
client = OpenAI(
base_url="https://router.huggingface.co/v1",
api_key=hf_token,
)
# Function to handle chat responses
def respond(
message: str,
history: list[tuple[str, str]],
system_message: str,
max_tokens: int,
temperature: float,
top_p: float,
):
# Build messages list with system prompt
messages = [{"role": "system", "content": system_message}]
# Append past conversation
for user_msg, bot_msg in history:
if user_msg:
messages.append({"role": "user", "content": user_msg})
if bot_msg:
messages.append({"role": "assistant", "content": bot_msg})
# Add current user message
messages.append({"role": "user", "content": message})
response_text = ""
# Stream completion
completion = client.chat.completions.create(
model="openai/gpt-oss-120b",
messages=messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
stream=True,
)
for chunk in completion:
# chunk.choices[0].delta is a ChoiceDelta object with .content attribute
delta = chunk.choices[0].delta.content or ""
response_text += delta
yield response_text
# Setup Gradio ChatInterface
demo = gr.ChatInterface(
fn=respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch(share=True)