Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,65 +1,85 @@
|
|
1 |
import os
|
|
|
2 |
import gradio as gr
|
3 |
from huggingface_hub import InferenceClient
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
""
|
8 |
-
hf_token = os.getenv("apikey")
|
9 |
-
client = InferenceClient(token=hf_token, model="HuggingFaceH4/zephyr-7b-beta")
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
history: list[tuple[str, str]],
|
14 |
-
system_message,
|
15 |
-
max_tokens,
|
16 |
-
temperature,
|
17 |
-
top_p,
|
18 |
-
):
|
19 |
-
messages = [{"role": "system", "content": system_message}]
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
|
|
29 |
response = ""
|
|
|
30 |
|
31 |
-
|
|
|
32 |
messages,
|
33 |
max_tokens=max_tokens,
|
34 |
stream=True,
|
35 |
temperature=temperature,
|
36 |
top_p=top_p,
|
37 |
):
|
38 |
-
token =
|
39 |
-
|
40 |
response += token
|
41 |
yield response
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
|
45 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
46 |
-
"""
|
47 |
demo = gr.ChatInterface(
|
48 |
respond,
|
49 |
additional_inputs=[
|
50 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
51 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
52 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
53 |
-
gr.Slider(
|
54 |
-
minimum=0.1,
|
55 |
-
maximum=1.0,
|
56 |
-
value=0.95,
|
57 |
-
step=0.05,
|
58 |
-
label="Top-p (nucleus sampling)",
|
59 |
-
),
|
60 |
],
|
61 |
)
|
62 |
|
63 |
-
|
64 |
if __name__ == "__main__":
|
65 |
-
demo.launch(
|
|
|
1 |
import os
|
2 |
+
import requests
|
3 |
import gradio as gr
|
4 |
from huggingface_hub import InferenceClient
|
5 |
|
6 |
+
# API keys from environment
|
7 |
+
hf_token = os.getenv("apikey") # Hugging Face token
|
8 |
+
tavily_token = os.getenv("tavily") # Tavily key
|
|
|
|
|
9 |
|
10 |
+
# 30B model (chat-tuned)
|
11 |
+
client = InferenceClient(token=hf_token, model="NousResearch/Nous-Hermes-2-Yi-34B")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
# Web search fallback
|
14 |
+
def search_tavily(query):
|
15 |
+
try:
|
16 |
+
res = requests.post("https://api.tavily.com/search", json={
|
17 |
+
"api_key": tavily_token,
|
18 |
+
"query": query,
|
19 |
+
"include_answer": True,
|
20 |
+
"search_depth": "basic"
|
21 |
+
})
|
22 |
+
return res.json().get("answer", "")
|
23 |
+
except:
|
24 |
+
return ""
|
25 |
|
26 |
+
# Main chat logic
|
27 |
+
def respond(message, history: list[tuple[str, str]], max_tokens, temperature, top_p):
|
28 |
+
messages = []
|
29 |
+
|
30 |
+
for user, assistant in history:
|
31 |
+
if user:
|
32 |
+
messages.append({"role": "user", "content": user})
|
33 |
+
if assistant:
|
34 |
+
messages.append({"role": "assistant", "content": assistant})
|
35 |
|
36 |
+
messages.append({"role": "user", "content": message})
|
37 |
response = ""
|
38 |
+
fallback_needed = False
|
39 |
|
40 |
+
# Attempt answer
|
41 |
+
for msg in client.chat_completion(
|
42 |
messages,
|
43 |
max_tokens=max_tokens,
|
44 |
stream=True,
|
45 |
temperature=temperature,
|
46 |
top_p=top_p,
|
47 |
):
|
48 |
+
token = msg.choices[0].delta.content
|
|
|
49 |
response += token
|
50 |
yield response
|
51 |
|
52 |
+
# Check if it's unsure
|
53 |
+
triggers = ["i don't know", "no information", "i cannot", "as an ai", "unsure"]
|
54 |
+
if any(trigger in response.lower() for trigger in triggers):
|
55 |
+
fallback_needed = True
|
56 |
+
|
57 |
+
# Retry with web search if needed
|
58 |
+
if fallback_needed:
|
59 |
+
web_snippet = search_tavily(message)
|
60 |
+
if web_snippet:
|
61 |
+
prompt = f"User asked: {message}\nHere’s info from the web: {web_snippet}\nAnswer:"
|
62 |
+
response = ""
|
63 |
+
for msg in client.chat_completion(
|
64 |
+
[{"role": "user", "content": prompt}],
|
65 |
+
max_tokens=max_tokens,
|
66 |
+
stream=True,
|
67 |
+
temperature=temperature,
|
68 |
+
top_p=top_p,
|
69 |
+
):
|
70 |
+
token = msg.choices[0].delta.content
|
71 |
+
response += token
|
72 |
+
yield response
|
73 |
|
74 |
+
# Gradio interface without system message
|
|
|
|
|
75 |
demo = gr.ChatInterface(
|
76 |
respond,
|
77 |
additional_inputs=[
|
|
|
78 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
79 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
80 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
],
|
82 |
)
|
83 |
|
|
|
84 |
if __name__ == "__main__":
|
85 |
+
demo.launch()
|