gauravlochab commited on
Commit
99e3a22
·
1 Parent(s): ae827bb

chore: remove filters

Browse files
Files changed (1) hide show
  1. app.py +18 -5
app.py CHANGED
@@ -1776,13 +1776,26 @@ def create_combined_time_series_graph(df):
1776
  logger.info(f"Unique agents after APR filter: {apr_data['agent_id'].nunique()}")
1777
  logger.info(f"Agent IDs after APR filter: {sorted(apr_data['agent_id'].unique().tolist())}")
1778
 
1779
- # Filter APR outliers (±500% range)
1780
- before_outlier_filter = len(apr_data)
1781
- apr_data = apr_data[(apr_data['apr'] <= 500) & (apr_data['apr'] >= -500)]
1782
- after_outlier_filter = len(apr_data)
 
 
 
 
 
1783
  excluded_by_outlier = before_outlier_filter - after_outlier_filter
1784
 
1785
- logger.info(f"APR outlier filtering: {before_outlier_filter} -> {after_outlier_filter} data points ({excluded_by_outlier} excluded)")
 
 
 
 
 
 
 
 
1786
 
1787
  # IMPORTANT: Filter data by hardcoded date range (June 6 to July 8, 2025)
1788
  min_date = datetime(2025, 6, 6)
 
1776
  logger.info(f"Unique agents after APR filter: {apr_data['agent_id'].nunique()}")
1777
  logger.info(f"Agent IDs after APR filter: {sorted(apr_data['agent_id'].unique().tolist())}")
1778
 
1779
+ # Date-based APR percentage filtering: ±500% filter until June 22, 2025, then no filter
1780
+ cutoff_date = datetime(2025, 6, 22)
1781
+ before_cutoff = apr_data[apr_data['timestamp'] < cutoff_date]
1782
+ after_cutoff = apr_data[apr_data['timestamp'] >= cutoff_date]
1783
+
1784
+ # Apply ±500% filter to data before June 22, 2025
1785
+ before_outlier_filter = len(before_cutoff)
1786
+ before_cutoff_filtered = before_cutoff[(before_cutoff['apr'] <= 500) & (before_cutoff['apr'] >= -500)]
1787
+ after_outlier_filter = len(before_cutoff_filtered)
1788
  excluded_by_outlier = before_outlier_filter - after_outlier_filter
1789
 
1790
+ logger.info(f"APR filtering before June 22, 2025: {before_outlier_filter} -> {after_outlier_filter} data points ({excluded_by_outlier} excluded by ±500% filter)")
1791
+
1792
+ # No filtering for data after June 22, 2025
1793
+ logger.info(f"APR filtering after June 22, 2025: {len(after_cutoff)} data points (no percentage filter applied)")
1794
+
1795
+ # Combine filtered before data with unfiltered after data
1796
+ apr_data = pd.concat([before_cutoff_filtered, after_cutoff], ignore_index=True)
1797
+
1798
+ logger.info(f"Total APR data after date-based filtering: {len(apr_data)} data points")
1799
 
1800
  # IMPORTANT: Filter data by hardcoded date range (June 6 to July 8, 2025)
1801
  min_date = datetime(2025, 6, 6)