""" CSV Loading Functions for Hugging Face Space Deployment This module provides functions to load preprocessed data from CSV files instead of making API calls, which helps avoid rate limiting issues. """ import pandas as pd import logging from datetime import datetime from typing import Tuple, Optional import os logger = logging.getLogger(__name__) def load_apr_data_from_csv() -> Tuple[pd.DataFrame, Optional[str]]: """ Load APR data from CSV files. Returns: Tuple of (DataFrame, csv_file_path) or (empty DataFrame, None) if files don't exist """ csv_file = "optimus_apr_values.csv" try: if not os.path.exists(csv_file): logger.warning(f"APR CSV file not found: {csv_file}") return pd.DataFrame(), None # Load the CSV file df = pd.read_csv(csv_file) # Convert timestamp column back to datetime if 'timestamp' in df.columns: df['timestamp'] = pd.to_datetime(df['timestamp']) # Ensure proper data types if 'apr' in df.columns: df['apr'] = df['apr'].astype(float) if 'adjusted_apr' in df.columns: df['adjusted_apr'] = pd.to_numeric(df['adjusted_apr'], errors='coerce') if 'agent_id' in df.columns: df['agent_id'] = df['agent_id'].astype(str) if 'is_dummy' in df.columns: df['is_dummy'] = df['is_dummy'].astype(bool) logger.info(f"Successfully loaded {len(df)} APR records from {csv_file}") # Log data freshness if not df.empty and 'timestamp' in df.columns: latest_timestamp = df['timestamp'].max() oldest_timestamp = df['timestamp'].min() logger.info(f"APR data range: {oldest_timestamp} to {latest_timestamp}") # Check how fresh the data is now = datetime.now() if latest_timestamp.tzinfo is None: # Make timezone-naive for comparison now = now.replace(tzinfo=None) hours_old = (now - latest_timestamp).total_seconds() / 3600 logger.info(f"Latest APR data is {hours_old:.1f} hours old") return df, csv_file except Exception as e: logger.error(f"Error loading APR data from CSV: {e}") return pd.DataFrame(), None def load_roi_data_from_csv() -> Tuple[pd.DataFrame, Optional[str]]: """ Load ROI data from CSV files. Returns: Tuple of (DataFrame, csv_file_path) or (empty DataFrame, None) if files don't exist """ csv_file = "optimus_roi_values.csv" try: if not os.path.exists(csv_file): logger.warning(f"ROI CSV file not found: {csv_file}") return pd.DataFrame(), None # Load the CSV file df = pd.read_csv(csv_file) # Convert timestamp column back to datetime if 'timestamp' in df.columns: df['timestamp'] = pd.to_datetime(df['timestamp']) # Ensure proper data types if 'roi' in df.columns: df['roi'] = df['roi'].astype(float) if 'agent_id' in df.columns: df['agent_id'] = df['agent_id'].astype(str) if 'is_dummy' in df.columns: df['is_dummy'] = df['is_dummy'].astype(bool) logger.info(f"Successfully loaded {len(df)} ROI records from {csv_file}") # Log data freshness if not df.empty and 'timestamp' in df.columns: latest_timestamp = df['timestamp'].max() oldest_timestamp = df['timestamp'].min() logger.info(f"ROI data range: {oldest_timestamp} to {latest_timestamp}") # Check how fresh the data is now = datetime.now() if latest_timestamp.tzinfo is None: # Make timezone-naive for comparison now = now.replace(tzinfo=None) hours_old = (now - latest_timestamp).total_seconds() / 3600 logger.info(f"Latest ROI data is {hours_old:.1f} hours old") return df, csv_file except Exception as e: logger.error(f"Error loading ROI data from CSV: {e}") return pd.DataFrame(), None def load_statistics_from_csv() -> pd.DataFrame: """ Load statistics data from CSV file. Returns: DataFrame with statistics or empty DataFrame if file doesn't exist """ csv_file = "optimus_apr_statistics.csv" try: if not os.path.exists(csv_file): logger.warning(f"Statistics CSV file not found: {csv_file}") return pd.DataFrame() # Load the CSV file df = pd.read_csv(csv_file) logger.info(f"Successfully loaded statistics from {csv_file}") return df except Exception as e: logger.error(f"Error loading statistics from CSV: {e}") return pd.DataFrame() def check_csv_data_availability() -> dict: """ Check which CSV files are available and their basic info. Returns: Dictionary with availability status and file info """ files_info = {} # Check APR data apr_file = "optimus_apr_values.csv" if os.path.exists(apr_file): try: df = pd.read_csv(apr_file) files_info['apr'] = { 'available': True, 'file': apr_file, 'records': len(df), 'size_mb': os.path.getsize(apr_file) / (1024 * 1024), 'modified': datetime.fromtimestamp(os.path.getmtime(apr_file)) } except Exception as e: files_info['apr'] = {'available': False, 'error': str(e)} else: files_info['apr'] = {'available': False, 'error': 'File not found'} # Check ROI data roi_file = "optimus_roi_values.csv" if os.path.exists(roi_file): try: df = pd.read_csv(roi_file) files_info['roi'] = { 'available': True, 'file': roi_file, 'records': len(df), 'size_mb': os.path.getsize(roi_file) / (1024 * 1024), 'modified': datetime.fromtimestamp(os.path.getmtime(roi_file)) } except Exception as e: files_info['roi'] = {'available': False, 'error': str(e)} else: files_info['roi'] = {'available': False, 'error': 'File not found'} # Check statistics data stats_file = "optimus_apr_statistics.csv" if os.path.exists(stats_file): try: df = pd.read_csv(stats_file) files_info['statistics'] = { 'available': True, 'file': stats_file, 'records': len(df), 'size_mb': os.path.getsize(stats_file) / (1024 * 1024), 'modified': datetime.fromtimestamp(os.path.getmtime(stats_file)) } except Exception as e: files_info['statistics'] = {'available': False, 'error': str(e)} else: files_info['statistics'] = {'available': False, 'error': 'File not found'} return files_info def get_data_freshness_info() -> dict: """ Get information about how fresh the CSV data is. Returns: Dictionary with freshness information """ info = {} try: # Check APR data freshness apr_df, _ = load_apr_data_from_csv() if not apr_df.empty and 'timestamp' in apr_df.columns: latest_apr = apr_df['timestamp'].max() now = datetime.now() if latest_apr.tzinfo is None: now = now.replace(tzinfo=None) hours_old = (now - latest_apr).total_seconds() / 3600 info['apr'] = { 'latest_data': latest_apr, 'hours_old': hours_old, 'is_fresh': hours_old < 24 # Consider fresh if less than 24 hours old } # Check ROI data freshness roi_df, _ = load_roi_data_from_csv() if not roi_df.empty and 'timestamp' in roi_df.columns: latest_roi = roi_df['timestamp'].max() now = datetime.now() if latest_roi.tzinfo is None: now = now.replace(tzinfo=None) hours_old = (now - latest_roi).total_seconds() / 3600 info['roi'] = { 'latest_data': latest_roi, 'hours_old': hours_old, 'is_fresh': hours_old < 24 # Consider fresh if less than 24 hours old } except Exception as e: logger.error(f"Error checking data freshness: {e}") info['error'] = str(e) return info