File size: 14,560 Bytes
d8cf478
 
 
 
 
 
 
 
efabdf9
6154c13
d8cf478
 
 
efabdf9
d8cf478
 
52d1750
6154c13
dc11fb3
d8cf478
0e538d2
 
 
 
 
 
efabdf9
5f0d39e
0e538d2
52d1750
d8cf478
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52d1750
d8cf478
 
 
 
 
 
 
 
 
 
 
52d1750
 
 
 
 
 
 
 
18ab870
 
 
 
 
 
d8cf478
 
18ab870
d8cf478
 
 
 
18ab870
d8cf478
 
 
5f0d39e
d8cf478
0e538d2
 
 
d8cf478
 
 
 
 
18ab870
efabdf9
5f0d39e
 
 
0e538d2
d8cf478
 
 
 
 
 
 
 
52d1750
 
 
 
18ab870
d8cf478
 
18ab870
 
d8cf478
 
 
 
 
18ab870
efabdf9
 
 
 
 
 
 
6154c13
 
 
7839697
 
 
 
 
 
 
d8cf478
 
 
 
 
 
 
efabdf9
d8cf478
efabdf9
d8cf478
 
efabdf9
d8cf478
 
 
 
 
 
 
 
 
 
 
52d1750
d8cf478
 
 
 
 
 
 
 
 
 
 
 
efabdf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18ab870
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8cf478
52d1750
 
 
dc11fb3
52d1750
 
 
12536a4
52d1750
 
12536a4
dc11fb3
330cbe3
 
 
 
dc11fb3
0e538d2
 
 
 
 
 
 
5f0d39e
 
 
 
 
 
 
 
 
 
6154c13
 
7839697
dc11fb3
 
6154c13
 
d8cf478
7839697
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8cf478
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
import gradio as gr
import pandas as pd
import duckdb
import logging


from scripts.metrics import (
    compute_weekly_metrics_by_market_creator,
    compute_daily_metrics_by_market_creator,
    compute_winning_metrics_by_trader,
)
from tabs.trader_plots import (
    plot_trader_metrics_by_market_creator,
    plot_trader_daily_metrics_by_market_creator,
    default_trader_metric,
    trader_metric_choices,
    get_metrics_text,
    plot_winning_metric_per_trader,
    get_interpretation_text,
)
from tabs.daily_graphs import (
    get_current_week_data,
    plot_daily_metrics,
    trade_daily_metric_choices,
    default_daily_metric,
)
from scripts.utils import get_traders_family
from scripts.trades_volume_per_market import plot_weekly_trades_volume_by_trader_family
from tabs.market_plots import plot_kl_div_per_market, plot_total_bet_amount


def get_logger():
    logger = logging.getLogger(__name__)
    logger.setLevel(logging.DEBUG)
    # stream handler and formatter
    stream_handler = logging.StreamHandler()
    stream_handler.setLevel(logging.DEBUG)
    formatter = logging.Formatter(
        "%(asctime)s - %(name)s - %(levelname)s - %(message)s"
    )
    stream_handler.setFormatter(formatter)
    logger.addHandler(stream_handler)
    return logger


logger = get_logger()


def get_all_data():
    """
    Get parquet files from weekly stats and new generated
    """
    logger.info("Getting traders data")
    con = duckdb.connect(":memory:")
    # Query to fetch data from all_trades_profitability.parquet
    query1 = f"""
    SELECT *
    FROM read_parquet('./data/all_trades_profitability.parquet')
    """
    df1 = con.execute(query1).fetchdf()
    logger.info("Got all data from all_trades_profitability.parquet")

    # Query to fetch data from closed_markets_div.parquet
    query2 = f"""
    SELECT *
    FROM read_parquet('./data/closed_markets_div.parquet')
    """
    df2 = con.execute(query2).fetchdf()
    logger.info("Got all data from closed_markets_div.parquet")

    # Query to fetch daily live data
    query3 = f"""
    SELECT *
    FROM read_parquet('./data/daily_info.parquet')
    """
    df3 = con.execute(query3).fetchdf()
    con.close()

    return df1, df2, df3


def prepare_data():

    all_trades, closed_markets, daily_info = get_all_data()

    all_trades["creation_date"] = all_trades["creation_timestamp"].dt.date

    # nr-trades variable
    volume_trades_per_trader_and_market = (
        all_trades.groupby(["trader_address", "title"])["roi"]
        .count()
        .reset_index(name="nr_trades_per_market")
    )

    trader_agents_data = pd.merge(
        all_trades, volume_trades_per_trader_and_market, on=["trader_address", "title"]
    )
    daily_info["creation_date"] = daily_info["creation_timestamp"].dt.date
    # adding the trader family column
    trader_agents_data["trader_family"] = trader_agents_data.apply(
        lambda x: get_traders_family(x), axis=1
    )
    print(trader_agents_data.head())

    trader_agents_data = trader_agents_data.sort_values(
        by="creation_timestamp", ascending=True
    )

    trader_agents_data["month_year_week"] = (
        trader_agents_data["creation_timestamp"].dt.to_period("W").dt.strftime("%b-%d")
    )

    closed_markets["month_year_week"] = (
        closed_markets["opening_datetime"].dt.to_period("W").dt.strftime("%b-%d")
    )
    return trader_agents_data, closed_markets, daily_info


trader_agents_data, closed_markets, daily_info = prepare_data()

demo = gr.Blocks()
# get weekly metrics by market creator: qs, pearl or all.
weekly_metrics_by_market_creator = compute_weekly_metrics_by_market_creator(
    trader_agents_data
)

weekly_agent_metrics_by_market_creator = compute_weekly_metrics_by_market_creator(
    trader_agents_data, trader_filter="agent"
)
weekly_non_agent_metrics_by_market_creator = compute_weekly_metrics_by_market_creator(
    trader_agents_data, trader_filter="non_agent"
)

weekly_winning_metrics = compute_winning_metrics_by_trader(
    trader_agents_data=trader_agents_data
)
weekly_agent_winning_metrics = compute_winning_metrics_by_trader(
    trader_agents_data=trader_agents_data, trader_filter="agent"
)
weekly_non_agent_winning_metrics = compute_winning_metrics_by_trader(
    trader_agents_data=trader_agents_data, trader_filter="non_agent"
)

with demo:
    gr.HTML("<h1>Trader agents monitoring dashboard </h1>")
    gr.Markdown(
        "This app shows the weekly performance of the trader agents in Olas Predict."
    )

    with gr.Tabs():
        with gr.TabItem("🔥 Weekly metrics"):
            with gr.Row():
                gr.Markdown("# Weekly metrics of all traders")
            with gr.Row():
                trader_details_selector = gr.Dropdown(
                    label="Select a weekly trader metric",
                    choices=trader_metric_choices,
                    value=default_trader_metric,
                )

            with gr.Row():
                with gr.Column(scale=3):
                    trader_markets_plot = plot_trader_metrics_by_market_creator(
                        metric_name=default_trader_metric,
                        traders_df=weekly_metrics_by_market_creator,
                    )
                with gr.Column(scale=1):
                    trade_details_text = get_metrics_text()

            def update_trader_details(trader_detail):
                return plot_trader_metrics_by_market_creator(
                    metric_name=trader_detail,
                    traders_df=weekly_metrics_by_market_creator,
                )

            trader_details_selector.change(
                update_trader_details,
                inputs=trader_details_selector,
                outputs=trader_markets_plot,
            )
            # Agentic traders graph
            with gr.Row():
                gr.Markdown("# Weekly metrics of trader Agents")
            with gr.Row():
                trader_a_details_selector = gr.Dropdown(
                    label="Select a weekly trader metric",
                    choices=trader_metric_choices,
                    value=default_trader_metric,
                )

            with gr.Row():
                with gr.Column(scale=3):
                    a_trader_markets_plot = plot_trader_metrics_by_market_creator(
                        metric_name=default_trader_metric,
                        traders_df=weekly_agent_metrics_by_market_creator,
                    )
                with gr.Column(scale=1):
                    trade_details_text = get_metrics_text()

            def update_a_trader_details(trader_detail):
                return plot_trader_metrics_by_market_creator(
                    metric_name=trader_detail,
                    traders_df=weekly_agent_metrics_by_market_creator,
                )

            trader_a_details_selector.change(
                update_a_trader_details,
                inputs=trader_a_details_selector,
                outputs=a_trader_markets_plot,
            )

            # Non-agentic traders graph
            with gr.Row():
                gr.Markdown("# Weekly metrics of Non-agent traders")
            with gr.Row():
                trader_na_details_selector = gr.Dropdown(
                    label="Select a weekly trader metric",
                    choices=trader_metric_choices,
                    value=default_trader_metric,
                )

            with gr.Row():
                with gr.Column(scale=3):
                    na_trader_markets_plot = plot_trader_metrics_by_market_creator(
                        metric_name=default_trader_metric,
                        traders_df=weekly_non_agent_metrics_by_market_creator,
                    )
                with gr.Column(scale=1):
                    trade_details_text = get_metrics_text()

            def update_na_trader_details(trader_detail):
                return plot_trader_metrics_by_market_creator(
                    metric_name=trader_detail,
                    traders_df=weekly_non_agent_metrics_by_market_creator,
                )

            trader_na_details_selector.change(
                update_na_trader_details,
                inputs=trader_na_details_selector,
                outputs=na_trader_markets_plot,
            )
        with gr.TabItem("📅 Daily trades dashboard (WIP)"):
            current_week_trades = get_current_week_data(trades_df=trader_agents_data)
            live_trades_current_week = get_current_week_data(trades_df=daily_info)
            if len(current_week_trades) > 0:
                daily_prof_metrics_by_market_creator = (
                    compute_daily_metrics_by_market_creator(current_week_trades)
                )
            else:
                daily_prof_metrics_by_market_creator = pd.DataFrame()
            live_metrics_by_market_creator = compute_daily_metrics_by_market_creator(
                live_trades_current_week, trader_filter=None, live_metrics=True
            )
            print("live metrics dataframe")
            print(live_metrics_by_market_creator.head())
            with gr.Row():
                gr.Markdown("# Daily live metrics for all trades")
            with gr.Row():
                trade_live_details_selector = gr.Dropdown(
                    label="Select a daily live metric",
                    choices=trade_daily_metric_choices,
                    value=default_daily_metric,
                )

            with gr.Row():
                with gr.Column(scale=3):
                    trade_live_details_plot = plot_daily_metrics(
                        metric_name=default_daily_metric,
                        trades_df=live_metrics_by_market_creator,
                    )
                with gr.Column(scale=1):
                    trade_details_text = get_metrics_text()

            def update_trade_live_details(trade_detail, trade_live_details_plot):
                new_a_plot = plot_daily_metrics(
                    metric_name=trade_detail, trades_df=live_metrics_by_market_creator
                )
                return new_a_plot

            trade_live_details_selector.change(
                update_trade_live_details,
                inputs=[trade_live_details_selector, trade_live_details_plot],
                outputs=[trade_live_details_plot],
            )

            with gr.Row():
                gr.Markdown("# Daily profitability metrics available for all trades")
            if len(current_week_trades) > 0:
                with gr.Row():
                    trader_daily_details_selector = gr.Dropdown(
                        label="Select a daily trade metric",
                        choices=trader_metric_choices,
                        value=default_trader_metric,
                    )

                with gr.Row():
                    with gr.Column(scale=3):
                        trader_daily_details_plot = plot_daily_metrics(
                            metric_name=default_trader_metric,
                            trades_df=daily_prof_metrics_by_market_creator,
                        )
                    with gr.Column(scale=1):
                        trader_details_text = get_metrics_text()

                def update_trader_daily_details(
                    trade_detail, trader_daily_details_plot
                ):
                    new_a_plot = plot_daily_metrics(
                        metric_name=trade_detail,
                        trades_df=daily_prof_metrics_by_market_creator,
                    )
                    return new_a_plot

                trader_daily_details_selector.change(
                    update_trader_daily_details,
                    inputs=[trader_daily_details_selector, trader_daily_details_plot],
                    outputs=[trader_daily_details_plot],
                )
            else:
                gr.Markdown("Data not available yet")

        with gr.TabItem("📉Closed Markets Kullback–Leibler divergence"):
            with gr.Row():
                gr.Markdown(
                    "# Weekly Market Prediction Accuracy for Closed Markets (Kullback-Leibler Divergence)"
                )
            with gr.Row():
                gr.Markdown(
                    "Aka, how much off is the market prediction’s accuracy from the real outcome of the event. Values capped at 20 for market outcomes completely opposite to the real outcome."
                )
            with gr.Row():
                trade_details_text = get_metrics_text()
            with gr.Row():
                with gr.Column(scale=3):
                    kl_div_plot = plot_kl_div_per_market(closed_markets=closed_markets)
                with gr.Column(scale=1):
                    interpretation = get_interpretation_text()

            with gr.Row():
                gr.Markdown(
                    "# Weekly total bet amount by market creator and trader type"
                )
            with gr.Row():
                total_bet_amount = plot_total_bet_amount(trader_agents_data)

            with gr.Row():
                gr.Markdown(
                    "# Weekly volume of trades at each market per trader family"
                )

            with gr.Row():
                trades_volume_plot = plot_weekly_trades_volume_by_trader_family(
                    trader_agents_data
                )

        with gr.TabItem("🎖️Weekly winning trades % per trader"):
            with gr.Row():
                gr.Markdown("# Weekly winning trades percentage from all traders")
            with gr.Row():
                metrics_text = get_metrics_text()
            with gr.Row():
                winning_metric = plot_winning_metric_per_trader(weekly_winning_metrics)

            # Agentic traders
            with gr.Row():
                gr.Markdown("# Weekly winning trades percentage from traders Agents")
            with gr.Row():
                metrics_text = get_metrics_text()
            with gr.Row():
                winning_metric = plot_winning_metric_per_trader(
                    weekly_agent_winning_metrics
                )

            # Non_agentic traders
            with gr.Row():
                gr.Markdown("# Weekly winning trades percentage from Non-agent traders")
            with gr.Row():
                metrics_text = get_metrics_text()
            with gr.Row():
                winning_metric = plot_winning_metric_per_trader(
                    weekly_non_agent_winning_metrics
                )

demo.queue(default_concurrency_limit=40).launch()