trader_agents_performance / tabs /trader_plots.py
cyberosa
correcting kl_div parameters and new graph for winning perc
6154c13
raw
history blame
4.25 kB
import gradio as gr
import pandas as pd
import plotly.express as px
trader_metric_choices = [
"mech calls",
"bet amount",
"earnings",
"net earnings",
"ROI",
]
default_trader_metric = "ROI"
def get_metrics_text() -> gr.Markdown:
metric_text = """
## Description of the graph
These metrics are computed weekly. The statistical measures are:
* min, max, 25th(q1), 50th(median) and 75th(q2) percentiles
* the upper and lower fences to delimit possible outliers
* the average values as the dotted lines
"""
return gr.Markdown(metric_text)
def plot_trader_metrics_by_market_creator(
metric_name: str, traders_df: pd.DataFrame
) -> gr.Plot:
"""Plots the weekly trader metrics."""
if metric_name == "mech calls":
metric_name = "mech_calls"
column_name = "nr_mech_calls"
yaxis_title = "Total nr of mech calls per trader"
elif metric_name == "ROI":
column_name = "roi"
yaxis_title = "Total ROI (net profit/cost)"
elif metric_name == "bet amount":
metric_name = "bet_amount"
column_name = metric_name
yaxis_title = "Total bet amount per trader (xDAI)"
elif metric_name == "net earnings":
metric_name = "net_earnings"
column_name = metric_name
yaxis_title = "Total net profit per trader (xDAI)"
else: # earnings
column_name = metric_name
yaxis_title = "Total gross profit per trader (xDAI)"
traders_filtered = traders_df[["month_year_week", "market_creator", column_name]]
fig = px.box(
traders_filtered,
x="month_year_week",
y=column_name,
color="market_creator",
color_discrete_sequence=["purple", "goldenrod", "darkgreen"],
category_orders={"market_creator": ["pearl", "quickstart", "all"]},
)
fig.update_traces(boxmean=True)
fig.update_layout(
xaxis_title="Week",
yaxis_title=yaxis_title,
legend=dict(yanchor="top", y=0.5),
)
fig.update_xaxes(tickformat="%b %d\n%Y")
return gr.Plot(
value=fig,
)
def plot_trader_metrics_by_trader_type(metric_name: str, traders_df: pd.DataFrame):
"""Plots the weekly trader metrics."""
if metric_name == "mech calls":
metric_name = "mech_calls"
column_name = "nr_mech_calls"
yaxis_title = "Total nr of mech calls per trader"
elif metric_name == "ROI":
column_name = "roi"
yaxis_title = "Total ROI (net profit/cost)"
elif metric_name == "bet amount":
metric_name = "bet_amount"
column_name = metric_name
yaxis_title = "Total bet amount per trader (xDAI)"
elif metric_name == "net earnings":
metric_name = "net_earnings"
column_name = metric_name
yaxis_title = "Total net profit per trader (xDAI)"
else: # earnings
column_name = metric_name
yaxis_title = "Total gross profit per trader (xDAI)"
traders_filtered = traders_df[["month_year_week", "trader_type", column_name]]
fig = px.box(
traders_filtered,
x="month_year_week",
y=column_name,
color="trader_type",
color_discrete_sequence=["gray", "orange", "darkblue"],
category_orders={"trader_type": ["singlebet", "multibet", "all"]},
)
fig.update_traces(boxmean=True)
fig.update_layout(
xaxis_title="Week",
yaxis_title=yaxis_title,
legend=dict(yanchor="top", y=0.5),
)
fig.update_xaxes(tickformat="%b %d\n%Y")
return gr.Plot(
value=fig,
)
def plot_winning_metric_per_trader(traders_winning_df: pd.DataFrame) -> gr.Plot:
fig = px.box(
traders_winning_df,
x="month_year_week",
y="winning_perc",
color="market_creator",
color_discrete_sequence=["purple", "goldenrod", "darkgreen"],
category_orders={"market_creator": ["pearl", "quickstart", "all"]},
)
fig.update_traces(boxmean=True)
fig.update_layout(
xaxis_title="Week",
yaxis_title="Weekly winning percentage %",
legend=dict(yanchor="top", y=0.5),
)
fig.update_xaxes(tickformat="%b %d\n%Y")
return gr.Plot(
value=fig,
)