cyberosa
restoring daily tab
b65d0e3
import gradio as gr
import pandas as pd
import logging
from scripts.utils import prepare_data
from scripts.metrics import (
compute_weekly_metrics_by_market_creator,
compute_daily_metrics_by_market_creator,
compute_winning_metrics_by_trader,
)
from scripts.retention_metrics import (
prepare_retention_dataset,
calculate_wow_retention_by_type,
calculate_cohort_retention,
)
from tabs.trader_plots import (
plot_trader_metrics_by_agent_categories,
default_trader_metric,
trader_metric_choices,
get_metrics_text,
plot_winning_metric_per_trader,
get_interpretation_text,
plot_total_bet_amount,
plot_active_traders,
)
from tabs.agent_graphs import (
plot_rolling_average_dune,
plot_rolling_average_roi,
plot_weekly_average_roi,
)
from tabs.daily_graphs import (
get_current_week_data,
plot_daily_metrics,
trader_daily_metric_choices,
default_daily_metric,
)
from scripts.utils import get_traders_family
from tabs.market_plots import (
plot_kl_div_per_market,
plot_total_bet_amount_per_trader_per_market,
)
from tabs.retention_plots import (
plot_wow_retention_by_type,
plot_cohort_retention_heatmap,
)
def get_logger():
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
# stream handler and formatter
stream_handler = logging.StreamHandler()
stream_handler.setLevel(logging.DEBUG)
formatter = logging.Formatter(
"%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
stream_handler.setFormatter(formatter)
logger.addHandler(stream_handler)
return logger
logger = get_logger()
(
traders_data,
closed_markets,
daily_info,
unknown_traders,
raw_retention_df,
active_traders,
all_mech_calls,
daa_qs_df,
daa_pearl_df,
weekly_avg_roi_pearl_agents,
two_weeks_avg_roi_pearl_agents,
traders_weekly_metrics_df,
) = prepare_data()
retention_df = prepare_retention_dataset(
retention_df=raw_retention_df, unknown_df=unknown_traders
)
print("max date of retention df")
print(max(retention_df.creation_timestamp))
demo = gr.Blocks()
# TODO classify traders in the weekly metrics dataframe by agent type (Pearl, QS, and all)
weekly_unknown_trader_metrics_by_market_creator = None
if len(unknown_traders) > 0:
weekly_unknown_trader_metrics_by_market_creator = (
compute_weekly_metrics_by_market_creator(
traders_data=unknown_traders,
all_mech_calls=None,
trader_filter=None,
unknown_trader=True,
)
)
# just for all traders
weekly_winning_metrics = compute_winning_metrics_by_trader(
traders_data=traders_data, unknown_info=unknown_traders
)
weekly_winning_metrics_olas = compute_winning_metrics_by_trader(
traders_data=traders_data, unknown_info=unknown_traders, trader_filter="Olas"
)
weekly_non_olas_winning_metrics = pd.DataFrame()
if len(traders_data.loc[traders_data["staking"] == "non_Olas"]) > 0:
weekly_non_olas_winning_metrics = compute_winning_metrics_by_trader(
traders_data=traders_data,
unknown_info=unknown_traders,
trader_filter="non_Olas",
)
with demo:
gr.HTML("<h1>Traders monitoring dashboard </h1>")
gr.Markdown("This app shows the weekly performance of the traders in Olas Predict.")
with gr.Tabs():
with gr.TabItem("🔥 Weekly metrics (WIP)"):
with gr.Row():
gr.Markdown("# Weekly metrics for all traders")
with gr.Row():
trader_details_selector = gr.Dropdown(
label="Select a weekly trader metric",
choices=trader_metric_choices,
value=default_trader_metric,
)
with gr.Row():
with gr.Column(scale=3):
trader_markets_plot = plot_trader_metrics_by_agent_categories(
metric_name=default_trader_metric,
traders_df=traders_weekly_metrics_df,
)
with gr.Column(scale=1):
trade_details_text = get_metrics_text(trader_type=None)
def update_trader_details(trader_detail):
return plot_trader_metrics_by_agent_categories(
metric_name=trader_detail,
traders_df=traders_weekly_metrics_df,
)
trader_details_selector.change(
update_trader_details,
inputs=trader_details_selector,
outputs=trader_markets_plot,
)
# if len(weekly_non_olas_metrics_by_market_creator) > 0:
# # Non-Olas traders graph
# with gr.Row():
# gr.Markdown("# Weekly metrics of Non-Olas traders")
# with gr.Row():
# trader_no_details_selector = gr.Dropdown(
# label="Select a weekly trader metric",
# choices=trader_metric_choices,
# value=default_trader_metric,
# )
# with gr.Row():
# with gr.Column(scale=3):
# trader_no_markets_plot = plot_trader_metrics_by_market_creator(
# metric_name=default_trader_metric,
# traders_df=weekly_non_olas_metrics_by_market_creator,
# )
# with gr.Column(scale=1):
# trade_details_text = get_metrics_text(trader_type="non_Olas")
# def update_no_trader_details(trader_detail):
# return plot_trader_metrics_by_market_creator(
# metric_name=trader_detail,
# traders_df=weekly_non_olas_metrics_by_market_creator,
# )
# trader_no_details_selector.change(
# update_no_trader_details,
# inputs=trader_no_details_selector,
# outputs=trader_no_markets_plot,
# )
# Unknown traders graph
# if weekly_unknown_trader_metrics_by_market_creator is not None:
# with gr.Row():
# gr.Markdown("# Weekly metrics of Unclassified traders")
# with gr.Row():
# trader_u_details_selector = gr.Dropdown(
# label="Select a weekly trader metric",
# choices=trader_metric_choices,
# value=default_trader_metric,
# )
# with gr.Row():
# with gr.Column(scale=3):
# trader_u_markets_plot = plot_trader_metrics_by_agent_categories(
# metric_name=default_trader_metric,
# traders_df=weekly_unknown_trader_metrics_by_market_creator,
# )
# with gr.Column(scale=1):
# trade_details_text = get_metrics_text(
# trader_type="unclassified"
# )
# def update_u_trader_details(trader_detail):
# return plot_trader_metrics_by_agent_categories(
# metric_name=trader_detail,
# traders_df=weekly_unknown_trader_metrics_by_market_creator,
# )
# trader_u_details_selector.change(
# update_u_trader_details,
# inputs=trader_u_details_selector,
# outputs=trader_u_markets_plot,
# )
with gr.TabItem("📅 Daily metrics (WIP)"):
live_trades_current_week = get_current_week_data(trades_df=daily_info)
if len(live_trades_current_week) > 0:
live_metrics_by_market_creator = (
compute_daily_metrics_by_market_creator(
live_trades_current_week, trader_filter=None, live_metrics=True
)
)
else:
live_metrics_by_market_creator = pd.DataFrame()
with gr.Row():
gr.Markdown("# Daily live metrics for all trades")
with gr.Row():
trade_live_details_selector = gr.Dropdown(
label="Select a daily live metric",
choices=trader_daily_metric_choices,
value=default_daily_metric,
)
with gr.Row():
with gr.Column(scale=3):
trade_live_details_plot = plot_daily_metrics(
metric_name=default_daily_metric,
trades_df=live_metrics_by_market_creator,
)
with gr.Column(scale=1):
trade_details_text = get_metrics_text(daily=True)
def update_trade_live_details(trade_detail, trade_live_details_plot):
new_a_plot = plot_daily_metrics(
metric_name=trade_detail, trades_df=live_metrics_by_market_creator
)
return new_a_plot
trade_live_details_selector.change(
update_trade_live_details,
inputs=[trade_live_details_selector, trade_live_details_plot],
outputs=[trade_live_details_plot],
)
# Olas traders
with gr.Row():
gr.Markdown("# Daily live metrics for 🌊 Olas traders")
with gr.Row():
o_trader_live_details_selector = gr.Dropdown(
label="Select a daily live metric",
choices=trader_daily_metric_choices,
value=default_daily_metric,
)
with gr.Row():
with gr.Column(scale=3):
o_trader_live_details_plot = plot_daily_metrics(
metric_name=default_daily_metric,
trades_df=live_metrics_by_market_creator,
trader_filter="Olas",
)
with gr.Column(scale=1):
trade_details_text = get_metrics_text(daily=True)
def update_a_trader_live_details(trade_detail, a_trader_live_details_plot):
o_trader_plot = plot_daily_metrics(
metric_name=trade_detail,
trades_df=live_metrics_by_market_creator,
trader_filter="Olas",
)
return o_trader_plot
o_trader_live_details_selector.change(
update_a_trader_live_details,
inputs=[o_trader_live_details_selector, o_trader_live_details_plot],
outputs=[o_trader_live_details_plot],
)
with gr.Row():
gr.Markdown("# Daily live metrics for Non-Olas traders")
with gr.Row():
no_trader_live_details_selector = gr.Dropdown(
label="Select a daily live metric",
choices=trader_daily_metric_choices,
value=default_daily_metric,
)
with gr.Row():
with gr.Column(scale=3):
no_trader_live_details_plot = plot_daily_metrics(
metric_name=default_daily_metric,
trades_df=live_metrics_by_market_creator,
trader_filter="non_Olas",
)
with gr.Column(scale=1):
trade_details_text = get_metrics_text(daily=True)
def update_na_trader_live_details(
trade_detail, no_trader_live_details_plot
):
no_trader_plot = plot_daily_metrics(
metric_name=trade_detail,
trades_df=live_metrics_by_market_creator,
trader_filter="non_Olas",
)
return no_trader_plot
no_trader_live_details_selector.change(
update_na_trader_live_details,
inputs=[no_trader_live_details_selector, no_trader_live_details_plot],
outputs=[no_trader_live_details_plot],
)
with gr.TabItem(" Agent metrics"):
with gr.Row():
gr.Markdown(" # Daily active Pearl agents")
with gr.Row():
rolling_avg_plot = plot_rolling_average_dune(
daa_pearl_df,
)
with gr.Row():
gr.Markdown(" # Daily active Quickstart agents")
with gr.Row():
rolling_avg_plot = plot_rolling_average_dune(
daa_qs_df,
)
with gr.Row():
gr.Markdown("# 2-weeks rolling average ROI for Pearl agents")
with gr.Row():
pearl_rolling_avg_plot = plot_rolling_average_roi(
two_weeks_avg_roi_pearl_agents
)
with gr.Row():
gr.Markdown("# Average weekly ROI for Pearl agents")
with gr.Row():
gr.Markdown(
"This graph shows the average weekly ROI for Pearl agents. The data is based on the latest DAA results."
)
with gr.Row():
weekly_avg_roi_plot = plot_weekly_average_roi(
weekly_avg_roi_df=weekly_avg_roi_pearl_agents,
)
with gr.TabItem("🪝 Retention metrics"):
with gr.Row():
gr.Markdown("# Wow retention by trader type")
with gr.Row():
gr.Markdown(
"""
Activity based on mech interactions for Olas and non_Olas traders and based on trading acitivity for the unclassified ones.
- Olas trader: agent using Mech, with a service ID and the corresponding safe in the registry
- Non-Olas trader: agent using Mech, with no service ID
- Unclassified trader: agent (safe/EOAs) not using Mechs
"""
)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("## Wow retention in Pearl markets")
wow_retention = calculate_wow_retention_by_type(
retention_df, market_creator="pearl"
)
wow_retention_plot = plot_wow_retention_by_type(
wow_retention=wow_retention
)
with gr.Column(scale=1):
gr.Markdown("## Wow retention in Quickstart markets")
wow_retention = calculate_wow_retention_by_type(
retention_df, market_creator="quickstart"
)
wow_retention_plot = plot_wow_retention_by_type(
wow_retention=wow_retention
)
with gr.Row():
gr.Markdown("# Cohort retention graphs")
with gr.Row():
gr.Markdown(
"The Cohort groups are organized by cohort weeks. A trader is part of a cohort group/week where it was detected the FIRST activity ever of that trader."
)
with gr.Row():
gr.Markdown(
"""
Week 0 for a cohort group is the same cohort week of the FIRST detected activity ever of that trader.
Only two values are possible for this Week 0:
1. 100% if the cohort size is > 0, meaning all traders active that first cohort week
2. 0% if the cohort size = 0, meaning no totally new traders started activity that cohort week.
"""
)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("## Cohort retention of pearl traders")
gr.Markdown("### Cohort retention of 🌊 Olas traders")
cohort_retention_olas_pearl = calculate_cohort_retention(
df=retention_df, market_creator="pearl", trader_type="Olas"
)
cohort_retention_plot1 = plot_cohort_retention_heatmap(
retention_matrix=cohort_retention_olas_pearl, cmap="Purples"
)
with gr.Column(scale=1):
gr.Markdown("## Cohort retention of quickstart traders")
gr.Markdown("### Cohort retention of 🌊 Olas traders")
cohort_retention_olas_qs = calculate_cohort_retention(
df=retention_df, market_creator="quickstart", trader_type="Olas"
)
cohort_retention_plot4 = plot_cohort_retention_heatmap(
retention_matrix=cohort_retention_olas_qs,
cmap="Purples",
)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("## Cohort retention of pearl traders")
cohort_retention_unclassified_pearl = calculate_cohort_retention(
df=retention_df,
market_creator="pearl",
trader_type="unclassified",
)
if len(cohort_retention_unclassified_pearl) > 0:
gr.Markdown("### Cohort retention of unclassified traders")
cohort_retention_plot3 = plot_cohort_retention_heatmap(
retention_matrix=cohort_retention_unclassified_pearl,
cmap="Greens",
)
with gr.Column(scale=1):
gr.Markdown("## Cohort retention in quickstart traders")
cohort_retention_unclassified_qs = calculate_cohort_retention(
df=retention_df,
market_creator="quickstart",
trader_type="unclassified",
)
if len(cohort_retention_unclassified_qs) > 0:
gr.Markdown("### Cohort retention of unclassified traders")
cohort_retention_plot6 = plot_cohort_retention_heatmap(
retention_matrix=cohort_retention_unclassified_qs,
cmap="Greens",
)
with gr.TabItem("⚙️ Active traders"):
with gr.Row():
gr.Markdown("# Active Pearl traders by trader categories")
with gr.Row():
active_traders_plot = plot_active_traders(active_traders)
with gr.Row():
gr.Markdown("# Active traders for Pearl markets by trader categories")
with gr.Row():
active_traders_plot_pearl = plot_active_traders(
active_traders, market_creator="pearl"
)
with gr.Row():
gr.Markdown("# Active Quickstart traders by trader categories")
with gr.Row():
active_traders_plot_qs = plot_active_traders(
active_traders, market_creator="quickstart"
)
with gr.TabItem("📉 Markets Kullback–Leibler divergence"):
with gr.Row():
gr.Markdown(
"# Weekly Market Prediction Accuracy for Closed Markets (Kullback-Leibler Divergence)"
)
with gr.Row():
gr.Markdown(
"Aka, how much off is the market prediction’s accuracy from the real outcome of the event. Values capped at 20 for market outcomes completely opposite to the real outcome."
)
with gr.Row():
trade_details_text = get_metrics_text()
with gr.Row():
with gr.Column(scale=3):
kl_div_plot = plot_kl_div_per_market(closed_markets=closed_markets)
with gr.Column(scale=1):
interpretation = get_interpretation_text()
with gr.TabItem("💰 Money invested per market category"):
with gr.Row():
gr.Markdown("# Weekly total bet amount per trader type for all markets")
gr.Markdown("## Computed only for traders using the mech service")
with gr.Row():
total_bet_amount = plot_total_bet_amount(
traders_data, market_filter="all"
)
with gr.Row():
gr.Markdown(
"# Weekly total bet amount per trader type for Pearl markets"
)
with gr.Row():
o_trader_total_bet_amount = plot_total_bet_amount(
traders_data, market_filter="pearl"
)
with gr.Row():
gr.Markdown(
"# Weekly total bet amount per trader type for Quickstart markets"
)
with gr.Row():
no_trader_total_bet_amount = plot_total_bet_amount(
traders_data, market_filter="quickstart"
)
with gr.TabItem("💰 Money invested per single market"):
with gr.Row():
gr.Markdown("# Weekly bet amounts per market for all traders")
gr.Markdown("## Computed only for traders using the mech service")
with gr.Row():
bet_amounts = plot_total_bet_amount_per_trader_per_market(traders_data)
with gr.Row():
gr.Markdown("# Weekly bet amounts per market for 🌊 Olas traders")
with gr.Row():
o_trader_bet_amounts = plot_total_bet_amount_per_trader_per_market(
traders_data, trader_filter="Olas"
)
with gr.TabItem("🎖️Weekly winning trades % per trader"):
with gr.Row():
gr.Markdown("# Weekly winning trades percentage from all traders")
with gr.Row():
metrics_text = get_metrics_text()
with gr.Row():
winning_metric = plot_winning_metric_per_trader(weekly_winning_metrics)
with gr.Row():
gr.Markdown("# Weekly winning trades percentage from 🌊 Olas traders")
with gr.Row():
metrics_text = get_metrics_text()
with gr.Row():
winning_metric_olas = plot_winning_metric_per_trader(
weekly_winning_metrics_olas
)
demo.queue(default_concurrency_limit=40).launch()