cyberosa
commited on
Commit
Β·
2206479
1
Parent(s):
09ddc82
new tab for agent metrics and update of roi functions for agents
Browse files- app.py +26 -21
- tabs/agent_graphs.py +127 -0
- tabs/daily_graphs.py +0 -72
- tabs/trader_plots.py +0 -98
app.py
CHANGED
@@ -26,14 +26,14 @@ from tabs.trader_plots import (
|
|
26 |
get_interpretation_text,
|
27 |
plot_total_bet_amount,
|
28 |
plot_active_traders,
|
29 |
-
plot_rolling_average_roi,
|
30 |
)
|
|
|
|
|
31 |
from tabs.daily_graphs import (
|
32 |
get_current_week_data,
|
33 |
plot_daily_metrics,
|
34 |
trader_daily_metric_choices,
|
35 |
default_daily_metric,
|
36 |
-
plot_rolling_average_dune,
|
37 |
)
|
38 |
from scripts.utils import get_traders_family
|
39 |
from tabs.market_plots import (
|
@@ -434,13 +434,7 @@ with demo:
|
|
434 |
inputs=trader_u_details_selector,
|
435 |
outputs=trader_u_markets_plot,
|
436 |
)
|
437 |
-
|
438 |
-
gr.Markdown("# 2-weeks rolling average ROI for Pearl traders")
|
439 |
-
with gr.Row():
|
440 |
-
pearl_rolling_avg_plot = plot_rolling_average_roi(
|
441 |
-
weekly_roi_df=weekly_metrics_by_market_creator,
|
442 |
-
market_creator="pearl",
|
443 |
-
)
|
444 |
with gr.TabItem("π
Daily metrics"):
|
445 |
live_trades_current_week = get_current_week_data(trades_df=daily_info)
|
446 |
if len(live_trades_current_week) > 0:
|
@@ -547,6 +541,29 @@ with demo:
|
|
547 |
inputs=[no_trader_live_details_selector, no_trader_live_details_plot],
|
548 |
outputs=[no_trader_live_details_plot],
|
549 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
550 |
with gr.TabItem("πͺ Retention metrics (WIP)"):
|
551 |
with gr.Row():
|
552 |
gr.Markdown("# Wow retention by trader type")
|
@@ -684,18 +701,6 @@ with demo:
|
|
684 |
active_traders_plot_qs = plot_active_traders(
|
685 |
active_traders, market_creator="quickstart"
|
686 |
)
|
687 |
-
with gr.Row():
|
688 |
-
gr.Markdown(" # Daily active agents in Pearl markets")
|
689 |
-
with gr.Row():
|
690 |
-
rolling_avg_plot = plot_rolling_average_dune(
|
691 |
-
daa_pearl_df,
|
692 |
-
)
|
693 |
-
with gr.Row():
|
694 |
-
gr.Markdown(" # Daily active agents in QS markets")
|
695 |
-
with gr.Row():
|
696 |
-
rolling_avg_plot = plot_rolling_average_dune(
|
697 |
-
daa_qs_df,
|
698 |
-
)
|
699 |
|
700 |
with gr.TabItem("π Markets KullbackβLeibler divergence"):
|
701 |
with gr.Row():
|
|
|
26 |
get_interpretation_text,
|
27 |
plot_total_bet_amount,
|
28 |
plot_active_traders,
|
|
|
29 |
)
|
30 |
+
from tabs.agent_graphs import plot_rolling_average_dune, plot_rolling_average_roi
|
31 |
+
|
32 |
from tabs.daily_graphs import (
|
33 |
get_current_week_data,
|
34 |
plot_daily_metrics,
|
35 |
trader_daily_metric_choices,
|
36 |
default_daily_metric,
|
|
|
37 |
)
|
38 |
from scripts.utils import get_traders_family
|
39 |
from tabs.market_plots import (
|
|
|
434 |
inputs=trader_u_details_selector,
|
435 |
outputs=trader_u_markets_plot,
|
436 |
)
|
437 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
438 |
with gr.TabItem("π
Daily metrics"):
|
439 |
live_trades_current_week = get_current_week_data(trades_df=daily_info)
|
440 |
if len(live_trades_current_week) > 0:
|
|
|
541 |
inputs=[no_trader_live_details_selector, no_trader_live_details_plot],
|
542 |
outputs=[no_trader_live_details_plot],
|
543 |
)
|
544 |
+
with gr.TabItem(" Agent metrics"):
|
545 |
+
with gr.Row():
|
546 |
+
gr.Markdown(" # Daily active Pearl agents")
|
547 |
+
with gr.Row():
|
548 |
+
rolling_avg_plot = plot_rolling_average_dune(
|
549 |
+
daa_pearl_df,
|
550 |
+
)
|
551 |
+
with gr.Row():
|
552 |
+
gr.Markdown(" # Daily active Quickstart agents")
|
553 |
+
with gr.Row():
|
554 |
+
rolling_avg_plot = plot_rolling_average_dune(
|
555 |
+
daa_qs_df,
|
556 |
+
)
|
557 |
+
with gr.Row():
|
558 |
+
gr.Markdown("# 2-weeks rolling average ROI for Pearl agents")
|
559 |
+
with gr.Row():
|
560 |
+
pearl_rolling_avg_plot = plot_rolling_average_roi(
|
561 |
+
weekly_roi_df=weekly_metrics_by_market_creator,
|
562 |
+
market_creator="pearl",
|
563 |
+
)
|
564 |
+
with gr.Row():
|
565 |
+
gr.Markdown("# Average weekly ROI for Pearl agents (WIP)")
|
566 |
+
|
567 |
with gr.TabItem("πͺ Retention metrics (WIP)"):
|
568 |
with gr.Row():
|
569 |
gr.Markdown("# Wow retention by trader type")
|
|
|
701 |
active_traders_plot_qs = plot_active_traders(
|
702 |
active_traders, market_creator="quickstart"
|
703 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
704 |
|
705 |
with gr.TabItem("π Markets KullbackβLeibler divergence"):
|
706 |
with gr.Row():
|
tabs/agent_graphs.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import gradio as gr
|
3 |
+
import gc
|
4 |
+
import plotly.express as px
|
5 |
+
|
6 |
+
|
7 |
+
def plot_rolling_average_dune(
|
8 |
+
daa_df: pd.DataFrame,
|
9 |
+
) -> gr.Plot:
|
10 |
+
"""Function to plot the rolling average of daily active traders"""
|
11 |
+
|
12 |
+
fig = px.bar(
|
13 |
+
daa_df,
|
14 |
+
x="tx_date",
|
15 |
+
y="seven_day_trailing_avg",
|
16 |
+
)
|
17 |
+
fig.update_layout(
|
18 |
+
xaxis_title="Date",
|
19 |
+
yaxis_title="7-day rolling average of DAA",
|
20 |
+
)
|
21 |
+
|
22 |
+
return gr.Plot(
|
23 |
+
value=fig,
|
24 |
+
)
|
25 |
+
|
26 |
+
|
27 |
+
def plot_rolling_average(
|
28 |
+
daa_df: pd.DataFrame,
|
29 |
+
market_creator: str = None,
|
30 |
+
) -> gr.Plot:
|
31 |
+
"""Function to plot the rolling average of daily active traders by markets"""
|
32 |
+
if market_creator is not None:
|
33 |
+
filtered_traders_df = daa_df.loc[daa_df["market_creator"] == market_creator]
|
34 |
+
rolling_avg_df = get_sevenday_rolling_average(filtered_traders_df)
|
35 |
+
else:
|
36 |
+
rolling_avg_df = get_sevenday_rolling_average(daa_df)
|
37 |
+
print(rolling_avg_df.head())
|
38 |
+
|
39 |
+
# Ensure 'creation_date' is a column, not an index
|
40 |
+
if "tx_date" not in rolling_avg_df.columns:
|
41 |
+
rolling_avg_df = rolling_avg_df.reset_index()
|
42 |
+
|
43 |
+
fig = px.bar(
|
44 |
+
rolling_avg_df,
|
45 |
+
x="tx_date",
|
46 |
+
y="rolling_avg_traders",
|
47 |
+
)
|
48 |
+
fig.update_layout(
|
49 |
+
xaxis_title="Date",
|
50 |
+
yaxis_title="7-day rolling average of DAA",
|
51 |
+
)
|
52 |
+
|
53 |
+
return gr.Plot(
|
54 |
+
value=fig,
|
55 |
+
)
|
56 |
+
|
57 |
+
|
58 |
+
def get_sevenday_rolling_average(daa_df: pd.DataFrame) -> pd.DataFrame:
|
59 |
+
"""Function to get the 7-day rolling average of the number of unique
|
60 |
+
trader_address"""
|
61 |
+
# Create a local copy of the dataframe
|
62 |
+
local_df = daa_df.copy()
|
63 |
+
|
64 |
+
# Sort the dataframe by date
|
65 |
+
local_df = local_df.sort_values(by="tx_date").set_index("tx_date")
|
66 |
+
|
67 |
+
# Group by market_creator and calculate rolling average of unique trader_address
|
68 |
+
rolling_avg = (
|
69 |
+
local_df.resample("D")["trader_address"]
|
70 |
+
.nunique()
|
71 |
+
.rolling(window=7)
|
72 |
+
.mean()
|
73 |
+
.reset_index()
|
74 |
+
)
|
75 |
+
rolling_avg.rename(columns={"trader_address": "rolling_avg_traders"}, inplace=True)
|
76 |
+
return rolling_avg
|
77 |
+
|
78 |
+
|
79 |
+
def plot_rolling_average_roi(
|
80 |
+
weekly_roi_df: pd.DataFrame, daa_pearl_df: pd.DataFrame
|
81 |
+
) -> gr.Plot:
|
82 |
+
"""Function to plot the rolling average of ROI for pearl agents"""
|
83 |
+
# Get the list of unique addresses from the daa_pearl_df
|
84 |
+
unique_addresses = daa_pearl_df["trader_address"].unique()
|
85 |
+
# Filter the weekly_roi_df to include only those addresses
|
86 |
+
filtered_weekly_roi_df = weekly_roi_df[
|
87 |
+
weekly_roi_df["trader_address"].isin(unique_addresses)
|
88 |
+
]
|
89 |
+
# Get the 2-week rolling average of ROI
|
90 |
+
rolling_avg_roi_df = get_twoweeks_rolling_average_roi(filtered_weekly_roi_df)
|
91 |
+
print(rolling_avg_roi_df.head())
|
92 |
+
# Ensure 'month_year_week' is a column, not an index
|
93 |
+
if "month_year_week" not in rolling_avg_roi_df.columns:
|
94 |
+
rolling_avg_roi_df = rolling_avg_roi_df.reset_index()
|
95 |
+
fig = px.bar(
|
96 |
+
rolling_avg_roi_df,
|
97 |
+
x="month_year_week",
|
98 |
+
y="rolling_avg_roi",
|
99 |
+
)
|
100 |
+
fig.update_layout(
|
101 |
+
xaxis_title="Week",
|
102 |
+
yaxis_title="2-week rolling average of ROI at the trader level",
|
103 |
+
)
|
104 |
+
|
105 |
+
return gr.Plot(
|
106 |
+
value=fig,
|
107 |
+
)
|
108 |
+
|
109 |
+
|
110 |
+
def get_twoweeks_rolling_average_roi(weekly_roi_df: pd.DataFrame) -> pd.DataFrame:
|
111 |
+
"""Function to get the 2-week rolling average of the ROI by market_creator and total"""
|
112 |
+
# Create a local copy of the dataframe
|
113 |
+
local_df = weekly_roi_df.copy()
|
114 |
+
|
115 |
+
# Convert string dates to datetime
|
116 |
+
local_df["month_year_week"] = pd.to_datetime(
|
117 |
+
local_df["month_year_week"], format="%b-%d-%Y"
|
118 |
+
)
|
119 |
+
# Sort the dataframe by date
|
120 |
+
local_df = local_df.sort_values(by="month_year_week").set_index("month_year_week")
|
121 |
+
|
122 |
+
# Group by market_creator and calculate rolling average of unique trader_address
|
123 |
+
trader_rolling_avg_roi = (
|
124 |
+
local_df.resample("W")["roi"].mean().rolling(window=2).mean().reset_index()
|
125 |
+
)
|
126 |
+
trader_rolling_avg_roi.rename(columns={"roi": "rolling_avg_roi"}, inplace=True)
|
127 |
+
return trader_rolling_avg_roi
|
tabs/daily_graphs.py
CHANGED
@@ -229,75 +229,3 @@ def plot_daily_metrics_v2(
|
|
229 |
|
230 |
# Update y-axes to have the same range
|
231 |
fig.update_yaxes(matches="y")
|
232 |
-
|
233 |
-
|
234 |
-
def get_sevenday_rolling_average(daa_df: pd.DataFrame) -> pd.DataFrame:
|
235 |
-
"""Function to get the 7-day rolling average of the number of unique
|
236 |
-
trader_address"""
|
237 |
-
# Create a local copy of the dataframe
|
238 |
-
local_df = daa_df.copy()
|
239 |
-
|
240 |
-
# Sort the dataframe by date
|
241 |
-
local_df = local_df.sort_values(by="tx_date").set_index("tx_date")
|
242 |
-
|
243 |
-
# Group by market_creator and calculate rolling average of unique trader_address
|
244 |
-
rolling_avg = (
|
245 |
-
local_df.resample("D")["trader_address"]
|
246 |
-
.nunique()
|
247 |
-
.rolling(window=7)
|
248 |
-
.mean()
|
249 |
-
.reset_index()
|
250 |
-
)
|
251 |
-
rolling_avg.rename(columns={"trader_address": "rolling_avg_traders"}, inplace=True)
|
252 |
-
return rolling_avg
|
253 |
-
|
254 |
-
|
255 |
-
def plot_rolling_average(
|
256 |
-
daa_df: pd.DataFrame,
|
257 |
-
market_creator: str = None,
|
258 |
-
) -> gr.Plot:
|
259 |
-
"""Function to plot the rolling average of daily active traders by markets"""
|
260 |
-
if market_creator is not None:
|
261 |
-
filtered_traders_df = daa_df.loc[daa_df["market_creator"] == market_creator]
|
262 |
-
rolling_avg_df = get_sevenday_rolling_average(filtered_traders_df)
|
263 |
-
else:
|
264 |
-
rolling_avg_df = get_sevenday_rolling_average(daa_df)
|
265 |
-
print(rolling_avg_df.head())
|
266 |
-
|
267 |
-
# Ensure 'creation_date' is a column, not an index
|
268 |
-
if "tx_date" not in rolling_avg_df.columns:
|
269 |
-
rolling_avg_df = rolling_avg_df.reset_index()
|
270 |
-
|
271 |
-
fig = px.bar(
|
272 |
-
rolling_avg_df,
|
273 |
-
x="tx_date",
|
274 |
-
y="rolling_avg_traders",
|
275 |
-
)
|
276 |
-
fig.update_layout(
|
277 |
-
xaxis_title="Date",
|
278 |
-
yaxis_title="7-day rolling average of DAA",
|
279 |
-
)
|
280 |
-
|
281 |
-
return gr.Plot(
|
282 |
-
value=fig,
|
283 |
-
)
|
284 |
-
|
285 |
-
|
286 |
-
def plot_rolling_average_dune(
|
287 |
-
daa_df: pd.DataFrame,
|
288 |
-
) -> gr.Plot:
|
289 |
-
"""Function to plot the rolling average of daily active traders"""
|
290 |
-
|
291 |
-
fig = px.bar(
|
292 |
-
daa_df,
|
293 |
-
x="tx_date",
|
294 |
-
y="seven_day_trailing_avg",
|
295 |
-
)
|
296 |
-
fig.update_layout(
|
297 |
-
xaxis_title="Date",
|
298 |
-
yaxis_title="7-day rolling average of DAA",
|
299 |
-
)
|
300 |
-
|
301 |
-
return gr.Plot(
|
302 |
-
value=fig,
|
303 |
-
)
|
|
|
229 |
|
230 |
# Update y-axes to have the same range
|
231 |
fig.update_yaxes(matches="y")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tabs/trader_plots.py
CHANGED
@@ -348,104 +348,6 @@ def plot_total_bet_amount(
|
|
348 |
)
|
349 |
|
350 |
|
351 |
-
def get_sevenday_rolling_average_by_market_creator(
|
352 |
-
active_traders_df: pd.DataFrame,
|
353 |
-
) -> pd.DataFrame:
|
354 |
-
"""Function to get the 7-day rolling average of the number of unique trader_address by market_creator and total"""
|
355 |
-
# Create a local copy of the dataframe
|
356 |
-
local_df = active_traders_df.copy()
|
357 |
-
|
358 |
-
# Convert string dates to datetime
|
359 |
-
local_df["creation_date"] = pd.to_datetime(
|
360 |
-
local_df["creation_date"], format="%b-%d-%Y"
|
361 |
-
)
|
362 |
-
# Sort the dataframe by date
|
363 |
-
local_df = local_df.sort_values(by="creation_date")
|
364 |
-
|
365 |
-
# Group by market_creator and creation_date, count unique traders
|
366 |
-
daily_traders = (
|
367 |
-
local_df.groupby(["market_creator", "creation_date"])["trader_address"]
|
368 |
-
.nunique()
|
369 |
-
.reset_index()
|
370 |
-
)
|
371 |
-
|
372 |
-
# Calculate rolling average for each market_creator
|
373 |
-
rolling_avg_by_market = daily_traders.copy()
|
374 |
-
rolling_avg_by_market["rolling_avg_traders"] = rolling_avg_by_market.groupby(
|
375 |
-
"market_creator"
|
376 |
-
)["trader_address"].transform(lambda x: x.rolling(window=7).mean())
|
377 |
-
|
378 |
-
# Calculate the total rolling average across all market_creators
|
379 |
-
all_markets = daily_traders.copy()
|
380 |
-
all_markets["market_creator"] = "all"
|
381 |
-
all_markets = (
|
382 |
-
all_markets.groupby(["market_creator", "creation_date"])["trader_address"]
|
383 |
-
.sum()
|
384 |
-
.reset_index()
|
385 |
-
)
|
386 |
-
|
387 |
-
all_markets["rolling_avg_traders"] = (
|
388 |
-
all_markets["trader_address"].rolling(window=7).mean()
|
389 |
-
)
|
390 |
-
|
391 |
-
# Combine both results
|
392 |
-
combined_rolling_avg = pd.concat(
|
393 |
-
[rolling_avg_by_market, all_markets], ignore_index=True
|
394 |
-
)
|
395 |
-
|
396 |
-
return combined_rolling_avg
|
397 |
-
|
398 |
-
|
399 |
-
def get_twoweeks_rolling_average_roi(weekly_roi_df: pd.DataFrame) -> pd.DataFrame:
|
400 |
-
"""Function to get the 2-week rolling average of the ROI by market_creator and total"""
|
401 |
-
# Create a local copy of the dataframe
|
402 |
-
local_df = weekly_roi_df.copy()
|
403 |
-
|
404 |
-
# Convert string dates to datetime
|
405 |
-
local_df["month_year_week"] = pd.to_datetime(
|
406 |
-
local_df["month_year_week"], format="%b-%d-%Y"
|
407 |
-
)
|
408 |
-
# Sort the dataframe by date
|
409 |
-
local_df = local_df.sort_values(by="month_year_week").set_index("month_year_week")
|
410 |
-
|
411 |
-
# Group by market_creator and calculate rolling average of unique trader_address
|
412 |
-
trader_rolling_avg_roi = (
|
413 |
-
local_df.resample("W")["roi"].mean().rolling(window=2).mean().reset_index()
|
414 |
-
)
|
415 |
-
trader_rolling_avg_roi.rename(columns={"roi": "rolling_avg_roi"}, inplace=True)
|
416 |
-
return trader_rolling_avg_roi
|
417 |
-
|
418 |
-
|
419 |
-
def plot_rolling_average_roi(
|
420 |
-
weekly_roi_df: pd.DataFrame, market_creator: str
|
421 |
-
) -> gr.Plot:
|
422 |
-
"""Function to plot the rolling average of ROI for traders in a given market"""
|
423 |
-
if market_creator != "all":
|
424 |
-
filtered_roi_df = weekly_roi_df.loc[
|
425 |
-
weekly_roi_df["market_creator"] == market_creator
|
426 |
-
]
|
427 |
-
rolling_avg_roi_df = get_twoweeks_rolling_average_roi(filtered_roi_df)
|
428 |
-
else:
|
429 |
-
rolling_avg_roi_df = get_twoweeks_rolling_average_roi(weekly_roi_df)
|
430 |
-
print(rolling_avg_roi_df.head())
|
431 |
-
# Ensure 'month_year_week' is a column, not an index
|
432 |
-
if "month_year_week" not in rolling_avg_roi_df.columns:
|
433 |
-
rolling_avg_roi_df = rolling_avg_roi_df.reset_index()
|
434 |
-
fig = px.bar(
|
435 |
-
rolling_avg_roi_df,
|
436 |
-
x="month_year_week",
|
437 |
-
y="rolling_avg_roi",
|
438 |
-
)
|
439 |
-
fig.update_layout(
|
440 |
-
xaxis_title="Week",
|
441 |
-
yaxis_title="4-week rolling average of ROI at the trader level",
|
442 |
-
)
|
443 |
-
|
444 |
-
return gr.Plot(
|
445 |
-
value=fig,
|
446 |
-
)
|
447 |
-
|
448 |
-
|
449 |
def plot_active_traders(
|
450 |
active_traders_data: pd.DataFrame,
|
451 |
market_creator: str = None,
|
|
|
348 |
)
|
349 |
|
350 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
351 |
def plot_active_traders(
|
352 |
active_traders_data: pd.DataFrame,
|
353 |
market_creator: str = None,
|