cyberosa
commited on
Commit
·
45dbef5
1
Parent(s):
5e64ef2
fixing error in agents graph
Browse files- tabs/agent_graphs.py +11 -70
tabs/agent_graphs.py
CHANGED
@@ -24,58 +24,6 @@ def plot_rolling_average_dune(
|
|
24 |
)
|
25 |
|
26 |
|
27 |
-
def plot_rolling_average(
|
28 |
-
daa_df: pd.DataFrame,
|
29 |
-
market_creator: str = None,
|
30 |
-
) -> gr.Plot:
|
31 |
-
"""Function to plot the rolling average of daily active agents"""
|
32 |
-
if market_creator is not None:
|
33 |
-
filtered_traders_df = daa_df.loc[daa_df["market_creator"] == market_creator]
|
34 |
-
rolling_avg_df = get_sevenday_rolling_average(filtered_traders_df)
|
35 |
-
else:
|
36 |
-
rolling_avg_df = get_sevenday_rolling_average(daa_df)
|
37 |
-
print(rolling_avg_df.head())
|
38 |
-
|
39 |
-
# Ensure 'creation_date' is a column, not an index
|
40 |
-
if "tx_date" not in rolling_avg_df.columns:
|
41 |
-
rolling_avg_df = rolling_avg_df.reset_index()
|
42 |
-
|
43 |
-
fig = px.bar(
|
44 |
-
rolling_avg_df,
|
45 |
-
x="tx_date",
|
46 |
-
y="rolling_avg_traders",
|
47 |
-
)
|
48 |
-
fig.update_layout(
|
49 |
-
xaxis_title="Date",
|
50 |
-
yaxis_title="7-day rolling average of DAA",
|
51 |
-
)
|
52 |
-
|
53 |
-
return gr.Plot(
|
54 |
-
value=fig,
|
55 |
-
)
|
56 |
-
|
57 |
-
|
58 |
-
def get_sevenday_rolling_average(daa_df: pd.DataFrame) -> pd.DataFrame:
|
59 |
-
"""Function to get the 7-day rolling average of the number of unique
|
60 |
-
trader_address"""
|
61 |
-
# Create a local copy of the dataframe
|
62 |
-
local_df = daa_df.copy()
|
63 |
-
|
64 |
-
# Sort the dataframe by date
|
65 |
-
local_df = local_df.sort_values(by="tx_date").set_index("tx_date")
|
66 |
-
|
67 |
-
# Group by market_creator and calculate rolling average of unique trader_address
|
68 |
-
rolling_avg = (
|
69 |
-
local_df.resample("D")["trader_address"]
|
70 |
-
.nunique()
|
71 |
-
.rolling(window=7)
|
72 |
-
.mean()
|
73 |
-
.reset_index()
|
74 |
-
)
|
75 |
-
rolling_avg.rename(columns={"trader_address": "rolling_avg_traders"}, inplace=True)
|
76 |
-
return rolling_avg
|
77 |
-
|
78 |
-
|
79 |
def plot_rolling_average_roi(
|
80 |
traders_data: pd.DataFrame, pearl_agents: pd.DataFrame
|
81 |
) -> gr.Plot:
|
@@ -96,20 +44,21 @@ def plot_rolling_average_roi(
|
|
96 |
|
97 |
# Get the 2-week rolling average of ROI
|
98 |
rolling_avg_roi_df = get_twoweeks_rolling_average_roi(filtered_traders_data)
|
|
|
99 |
print(rolling_avg_roi_df.head())
|
100 |
|
101 |
-
|
102 |
rolling_avg_roi_df,
|
103 |
x="creation_date",
|
104 |
y="rolling_avg_roi",
|
105 |
)
|
106 |
-
|
107 |
xaxis_title="Week",
|
108 |
yaxis_title="2-week rolling average of ROI at the trader level",
|
109 |
)
|
110 |
|
111 |
return gr.Plot(
|
112 |
-
value=
|
113 |
)
|
114 |
|
115 |
|
@@ -124,20 +73,14 @@ def get_twoweeks_rolling_average_roi(traders_data: pd.DataFrame) -> pd.DataFrame
|
|
124 |
local_df["creation_date"] = pd.to_datetime(local_df["creation_date"])
|
125 |
|
126 |
# Aggregate ROI at the date level
|
127 |
-
|
128 |
|
129 |
# Set the datetime index
|
130 |
-
|
131 |
|
132 |
# Now resample and rolling average
|
133 |
-
|
134 |
-
rolling_avg =
|
135 |
-
|
136 |
-
# Rename columns
|
137 |
-
rolling_avg.rename(
|
138 |
-
columns={"roi": "rolling_avg_roi", "date": "creation_date"},
|
139 |
-
inplace=True,
|
140 |
-
)
|
141 |
|
142 |
return rolling_avg
|
143 |
|
@@ -164,9 +107,6 @@ def get_weekly_average_roi(traders_data: pd.DataFrame) -> pd.DataFrame:
|
|
164 |
# Remove NaN values
|
165 |
weekly_avg = weekly_avg.dropna(subset=["roi"])
|
166 |
|
167 |
-
# Rename columns for clarity
|
168 |
-
weekly_avg = weekly_avg.rename(columns={"roi": "weekly_avg_roi"})
|
169 |
-
|
170 |
return weekly_avg
|
171 |
|
172 |
|
@@ -176,12 +116,12 @@ def plot_weekly_average_roi(
|
|
176 |
"""Function to plot the weekly average of ROI for pearl agents"""
|
177 |
# Get the list of unique addresses from the daa_pearl_df
|
178 |
unique_addresses = pearl_agents["safe_address"].unique()
|
179 |
-
|
180 |
# Filter the weekly_roi_df to include only those addresses
|
181 |
filtered_traders_data = traders_data[
|
182 |
traders_data["trader_address"].isin(unique_addresses)
|
183 |
].copy()
|
184 |
-
|
185 |
# create the date column
|
186 |
filtered_traders_data["creation_timestamp"] = pd.to_datetime(
|
187 |
filtered_traders_data["creation_timestamp"]
|
@@ -192,6 +132,7 @@ def plot_weekly_average_roi(
|
|
192 |
|
193 |
# Get the weekly average ROI
|
194 |
weekly_avg_roi_df = get_weekly_average_roi(filtered_traders_data)
|
|
|
195 |
print(weekly_avg_roi_df.head())
|
196 |
|
197 |
# Update the plot to use the correct column name 'weekly_avg_roi'
|
|
|
24 |
)
|
25 |
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
def plot_rolling_average_roi(
|
28 |
traders_data: pd.DataFrame, pearl_agents: pd.DataFrame
|
29 |
) -> gr.Plot:
|
|
|
44 |
|
45 |
# Get the 2-week rolling average of ROI
|
46 |
rolling_avg_roi_df = get_twoweeks_rolling_average_roi(filtered_traders_data)
|
47 |
+
print("Rolling average ROI DataFrame:")
|
48 |
print(rolling_avg_roi_df.head())
|
49 |
|
50 |
+
fig2 = px.bar(
|
51 |
rolling_avg_roi_df,
|
52 |
x="creation_date",
|
53 |
y="rolling_avg_roi",
|
54 |
)
|
55 |
+
fig2.update_layout(
|
56 |
xaxis_title="Week",
|
57 |
yaxis_title="2-week rolling average of ROI at the trader level",
|
58 |
)
|
59 |
|
60 |
return gr.Plot(
|
61 |
+
value=fig2,
|
62 |
)
|
63 |
|
64 |
|
|
|
73 |
local_df["creation_date"] = pd.to_datetime(local_df["creation_date"])
|
74 |
|
75 |
# Aggregate ROI at the date level
|
76 |
+
daily_avg2 = local_df.groupby("creation_date")["roi"].mean().reset_index()
|
77 |
|
78 |
# Set the datetime index
|
79 |
+
daily_avg2 = daily_avg2.set_index("creation_date")
|
80 |
|
81 |
# Now resample and rolling average
|
82 |
+
weekly_avg2 = daily_avg2.resample("W").mean()
|
83 |
+
rolling_avg = weekly_avg2.rolling(window=2).mean().reset_index()
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
return rolling_avg
|
86 |
|
|
|
107 |
# Remove NaN values
|
108 |
weekly_avg = weekly_avg.dropna(subset=["roi"])
|
109 |
|
|
|
|
|
|
|
110 |
return weekly_avg
|
111 |
|
112 |
|
|
|
116 |
"""Function to plot the weekly average of ROI for pearl agents"""
|
117 |
# Get the list of unique addresses from the daa_pearl_df
|
118 |
unique_addresses = pearl_agents["safe_address"].unique()
|
119 |
+
|
120 |
# Filter the weekly_roi_df to include only those addresses
|
121 |
filtered_traders_data = traders_data[
|
122 |
traders_data["trader_address"].isin(unique_addresses)
|
123 |
].copy()
|
124 |
+
|
125 |
# create the date column
|
126 |
filtered_traders_data["creation_timestamp"] = pd.to_datetime(
|
127 |
filtered_traders_data["creation_timestamp"]
|
|
|
132 |
|
133 |
# Get the weekly average ROI
|
134 |
weekly_avg_roi_df = get_weekly_average_roi(filtered_traders_data)
|
135 |
+
print("Weekly average ROI DataFrame:")
|
136 |
print(weekly_avg_roi_df.head())
|
137 |
|
138 |
# Update the plot to use the correct column name 'weekly_avg_roi'
|