cyberosa commited on
Commit
a1e2e79
·
1 Parent(s): 7eba7a1

cleaning and fix on one agent graph

Browse files
Files changed (2) hide show
  1. tabs/agent_graphs.py +7 -1
  2. tabs/trader_plots.py +0 -47
tabs/agent_graphs.py CHANGED
@@ -94,9 +94,15 @@ def get_weekly_average_roi(traders_data: pd.DataFrame) -> pd.DataFrame:
94
  # Ensure creation_date is datetime64[ns]
95
  # Since creation_date comes from .dt.date, it's a date object, not datetime
96
  local_df["creation_date"] = pd.to_datetime(local_df["creation_date"])
 
 
 
 
 
 
97
 
98
  # Aggregate ROI at the date level first
99
- daily_avg = local_df.groupby("creation_date")["roi"].mean().reset_index()
100
 
101
  # Set the datetime index
102
  daily_avg = daily_avg.set_index("creation_date")
 
94
  # Ensure creation_date is datetime64[ns]
95
  # Since creation_date comes from .dt.date, it's a date object, not datetime
96
  local_df["creation_date"] = pd.to_datetime(local_df["creation_date"])
97
+ # take the daily mean roi at the trader_address level
98
+ daily_mean_roi = (
99
+ local_df.groupby(["trader_address", "creation_date"])["roi"]
100
+ .mean()
101
+ .reset_index()
102
+ )
103
 
104
  # Aggregate ROI at the date level first
105
+ daily_avg = daily_mean_roi.groupby("creation_date")["roi"].mean().reset_index()
106
 
107
  # Set the datetime index
108
  daily_avg = daily_avg.set_index("creation_date")
tabs/trader_plots.py CHANGED
@@ -84,53 +84,6 @@ def get_interpretation_text() -> gr.Markdown:
84
  return gr.Markdown(interpretation_text)
85
 
86
 
87
- def plot_avg_monthly_ROI(traders_df: pd.DataFrame, market_creator: str) -> gr.Plot:
88
- """Plots the average monthly ROI."""
89
-
90
- filtered_traders_df = traders_df.copy()
91
- if market_creator != "all": # filter by market creator
92
- filtered_traders_df = filtered_traders_df[
93
- traders_df["market_creator"] == market_creator
94
- ]
95
-
96
- # Create the column month_year from the creation_date
97
- filtered_traders_df["month_year"] = filtered_traders_df["creation_date"].apply(
98
- lambda x: x.strftime("%Y-%m")
99
- )
100
- # Compute the average monthly ROI per trader
101
-
102
- monthly_avg_roi_traders = (
103
- filtered_traders_df.groupby(["month_year", "trader_address"])["roi"]
104
- .mean()
105
- .reset_index(name="avg_roi")
106
- )
107
-
108
- # Plot the mean value per month in monthly_avg_roi_traders
109
- total_monthly_avg_roi = (
110
- monthly_avg_roi_traders.groupby("month_year")["avg_roi"]
111
- .mean()
112
- .reset_index(name="avg_roi")
113
- )
114
-
115
- fig = px.line(
116
- total_monthly_avg_roi,
117
- x="month_year",
118
- y="avg_roi",
119
- )
120
-
121
- fig.update_layout(
122
- xaxis_title="Month-Year",
123
- yaxis_title="Average monthly ROI (net profit/cost)",
124
- )
125
- fig.update_xaxes(
126
- tickvals=total_monthly_avg_roi["month_year"].tolist(), # Set x-axis tick values
127
- tickformat="%Y-%m",
128
- )
129
- return gr.Plot(
130
- value=fig,
131
- )
132
-
133
-
134
  def plot_trader_metrics_by_market_creator(
135
  metric_name: str, traders_df: pd.DataFrame
136
  ) -> gr.Plot:
 
84
  return gr.Markdown(interpretation_text)
85
 
86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87
  def plot_trader_metrics_by_market_creator(
88
  metric_name: str, traders_df: pd.DataFrame
89
  ) -> gr.Plot: