{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/Users/cyberosa/.pyenv/versions/hf_dashboards/lib/python3.12/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", " from .autonotebook import tqdm as notebook_tqdm\n" ] } ], "source": [ "import pandas as pd\n", "import gradio as gr\n", "import plotly.express as px\n", "import plotly.graph_objects as go\n", "from plotly.subplots import make_subplots\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "div_data = pd.read_parquet(\"../data/closed_markets_div.parquet\")" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
currentAnsweridopeningTimestampmarket_creatoropening_datetimefirst_outcome_probsecond_outcome_probkl_divergenceoff_by_perc
315no0x29462bf8c8f24772cd6da03878a4aee5c58134741724976000pearl2024-08-30 02:00:000.94160.05842.84043994.16
323yes0x0ad9d4edb0a401ec9a5b4f2ccf7942d28c29d4e31724976000quickstart2024-08-30 02:00:000.04990.95012.99773495.01
\n", "
" ], "text/plain": [ " currentAnswer id \\\n", "315 no 0x29462bf8c8f24772cd6da03878a4aee5c5813474 \n", "323 yes 0x0ad9d4edb0a401ec9a5b4f2ccf7942d28c29d4e3 \n", "\n", " openingTimestamp market_creator opening_datetime first_outcome_prob \\\n", "315 1724976000 pearl 2024-08-30 02:00:00 0.9416 \n", "323 1724976000 quickstart 2024-08-30 02:00:00 0.0499 \n", "\n", " second_outcome_prob kl_divergence off_by_perc \n", "315 0.0584 2.840439 94.16 \n", "323 0.9501 2.997734 95.01 " ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "div_data.loc[div_data[\"off_by_perc\"]>=90]" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
currentAnsweridopeningTimestampmarket_creatoropening_datetimefirst_outcome_probsecond_outcome_probkl_divergenceoff_by_perc
52no0x927beda324bfd4514a7b64ab5594451fdaf4796e1722816000quickstart2024-08-05 02:00:000.87920.12082.11361987.92
293yes0x90bb15982f2b5a5f044ad8ff49fe20daddfb8ca71724803200quickstart2024-08-28 02:00:000.11660.88342.14900688.34
315no0x29462bf8c8f24772cd6da03878a4aee5c58134741724976000pearl2024-08-30 02:00:000.94160.05842.84043994.16
323yes0x0ad9d4edb0a401ec9a5b4f2ccf7942d28c29d4e31724976000quickstart2024-08-30 02:00:000.04990.95012.99773495.01
\n", "
" ], "text/plain": [ " currentAnswer id \\\n", "52 no 0x927beda324bfd4514a7b64ab5594451fdaf4796e \n", "293 yes 0x90bb15982f2b5a5f044ad8ff49fe20daddfb8ca7 \n", "315 no 0x29462bf8c8f24772cd6da03878a4aee5c5813474 \n", "323 yes 0x0ad9d4edb0a401ec9a5b4f2ccf7942d28c29d4e3 \n", "\n", " openingTimestamp market_creator opening_datetime first_outcome_prob \\\n", "52 1722816000 quickstart 2024-08-05 02:00:00 0.8792 \n", "293 1724803200 quickstart 2024-08-28 02:00:00 0.1166 \n", "315 1724976000 pearl 2024-08-30 02:00:00 0.9416 \n", "323 1724976000 quickstart 2024-08-30 02:00:00 0.0499 \n", "\n", " second_outcome_prob kl_divergence off_by_perc \n", "52 0.1208 2.113619 87.92 \n", "293 0.8834 2.149006 88.34 \n", "315 0.0584 2.840439 94.16 \n", "323 0.9501 2.997734 95.01 " ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "div_data.loc[div_data[\"kl_divergence\"]>=2.0]" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "all_markets = closed_markets.copy(deep=True)\n", " all_markets[\"market_creator\"] = \"all\"\n", "\n", " # merging both dataframes\n", " final_markets = pd.concat([div_data, all_markets], ignore_index=True)\n", " final_markets = final_markets.sort_values(by=\"opening_datetime\", ascending=True)\n", "\n", " # Create the main figure and axis\n", " fig, ax1 = plt.subplots(figsize=(10, 6))\n", "\n", " # Create the boxplot using seaborn\n", " sns.boxplot(\n", " data=closed_markets,\n", " x=\"month_year_week\",\n", " y=\"kl_divergence\",\n", " ax=ax1,\n", " hue=\"market_creator\",\n", " order=[\"pearl\", \"quickstart\", \"all\"],\n", " )\n", "\n", " # Set labels and title for the main axis\n", " ax1.set_xlabel(\"Week\")\n", " ax1.set_ylabel(\"KL Divergence\")\n", " ax1.set_title(\"KL Divergence Boxplot with Off-by Percentage\")\n", "\n", " # Create a secondary y-axis\n", " ax2 = ax1.twinx()\n", "\n", " # Plot the off_by_perc values on the secondary y-axis\n", " for i, week in enumerate(closed_markets[\"month_year_week\"].unique()):\n", " off_by_perc = closed_markets[closed_markets[\"month_year_week\"] == week][\n", " \"off_by_perc\"\n", " ]\n", " ax2.scatter([i] * len(off_by_perc), off_by_perc, color=\"red\", alpha=0.01)\n", "\n", " # Set label for the secondary y-axis\n", " ax2.set_ylabel(\"Off-by Percentage\")\n", "\n", " # Adjust the layout and display the plot\n", " plt.tight_layout()" ] } ], "metadata": { "kernelspec": { "display_name": "hf_dashboards", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.2" } }, "nbformat": 4, "nbformat_minor": 2 }