Spaces:
Sleeping
Sleeping
add the final scripts
Browse files- .gitattributes +2 -0
- 09_pretrained_vit_feature_extractor_pizza_steak_sushi_20_percent.pth +3 -0
- app.py +66 -0
- examples/2582289.jpg +0 -0
- examples/3622237.jpg +0 -0
- examples/592799.jpg +0 -0
- model.py +25 -0
- requirements.txt +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
09_pretrained_vit_feature_extractor_pizza_steak_sushi_20_percent.pth filter=lfs diff=lfs merge=lfs -text
|
37 |
+
.pth filter=lfs diff=lfs merge=lfs -text
|
09_pretrained_vit_feature_extractor_pizza_steak_sushi_20_percent.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e3c46b8bce9fea760b9e2891199c70a41e577c40dba131904599c1ed9d43e757
|
3 |
+
size 343273342
|
app.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### 1. Imports and class names setup ###
|
2 |
+
from model import create_vitB16_model
|
3 |
+
import torch
|
4 |
+
from typing import Tuple, Dict
|
5 |
+
from timeit import default_timer as timer
|
6 |
+
import gradio as gr
|
7 |
+
|
8 |
+
# Setup class names
|
9 |
+
class_names = ['pizza', 'steak', 'sushi']
|
10 |
+
|
11 |
+
### 2. Model and transforms perparation ###
|
12 |
+
model, model_transforms = create_vitB16_model(num_classes=len(class_names))
|
13 |
+
|
14 |
+
# Load save weights
|
15 |
+
model.load_state_dict(torch.load(f='09_pretrained_vit_feature_extractor_pizza_steak_sushi_20_percent.pth',
|
16 |
+
map_location='cpu'))
|
17 |
+
|
18 |
+
# 3. Predict Function
|
19 |
+
|
20 |
+
def predict(img) -> Tuple[Dict, float]:
|
21 |
+
# Start a timer
|
22 |
+
start_time = timer()
|
23 |
+
|
24 |
+
# Transform the input image for use with vitB16
|
25 |
+
img = model_transforms(img).unsqueeze(dim=0)
|
26 |
+
|
27 |
+
# Put model into eval mode, make prediction
|
28 |
+
model.eval()
|
29 |
+
with torch.inference_mode():
|
30 |
+
# Pass transformed image through the model and turn the prediction logits into probabilities
|
31 |
+
pred_logit = model(img)
|
32 |
+
pred_prob = torch.softmax(pred_logit, dim=1)
|
33 |
+
|
34 |
+
# Create a prediction label and prediction probability dictionary
|
35 |
+
pred_labels_and_probs = {class_names[i]: float(pred_prob[0][i]) for i in range(len(class_names))}
|
36 |
+
|
37 |
+
# Calculate pred time
|
38 |
+
end_time = timer()
|
39 |
+
pred_time = round(end_time - start_time, 4)
|
40 |
+
|
41 |
+
# Return pred dict and pred time
|
42 |
+
return pred_labels_and_probs, pred_time
|
43 |
+
|
44 |
+
### 4. Gradio app ###
|
45 |
+
|
46 |
+
|
47 |
+
# Create title, description and article
|
48 |
+
title = "FoodVision Mini ππ₯©π£"
|
49 |
+
description = "A [vision Transformer B16 feature extractor](https://pytorch.org/vision/stable/models/generated/torchvision.models.vit_b_16.html) computer vision model to classify images as pizza, steak or sushi."
|
50 |
+
article = "Created with π€ (and a mixture of mathematics, statistics, and tons of calculations π©π½βπ¬)"
|
51 |
+
|
52 |
+
# Create example list
|
53 |
+
example_list = [["examples/" + example] for example in os.listdir("examples")]
|
54 |
+
|
55 |
+
demo = gr.Interface(fn=predict,
|
56 |
+
inputs=gr.Image(type='pil'),
|
57 |
+
outputs=[gr.Label(num_top_classes=3, label='Predictions'),
|
58 |
+
gr.Number(label="Prediction time (s)")],
|
59 |
+
examples=example_list,
|
60 |
+
title=title,
|
61 |
+
description=description,
|
62 |
+
article=article)
|
63 |
+
|
64 |
+
# Launch the demo!
|
65 |
+
demo.launch(debug=False, # print errors locally?
|
66 |
+
share=True) # generate a publically shareable URL
|
examples/2582289.jpg
ADDED
![]() |
examples/3622237.jpg
ADDED
![]() |
examples/592799.jpg
ADDED
![]() |
model.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch, torchvision
|
2 |
+
def create_vitB16_model(num_classes: int=3, seeds: int = 42):
|
3 |
+
|
4 |
+
# 1. Setup pretrained viT Weights
|
5 |
+
weights = torchvision.models.ViT_B_16_Weights.DEFAULT
|
6 |
+
|
7 |
+
# 2. Get transforms
|
8 |
+
transforms = weights.transforms()
|
9 |
+
|
10 |
+
# 3. Setup pretrained instance
|
11 |
+
model = torchvision.models.vit_b_16(weights=weights)
|
12 |
+
|
13 |
+
# 4. Freeze the base layers in the model (this will stop all layers from training)
|
14 |
+
for params in model.parameters():
|
15 |
+
params.requires_grad = False
|
16 |
+
|
17 |
+
# Set seeds for reproducibility
|
18 |
+
torch.manual_seed(seeds)
|
19 |
+
|
20 |
+
# 5. Modify the number of output layers
|
21 |
+
model.heads = torch.nn.Sequential(
|
22 |
+
torch.nn.Linear(in_features=768, out_features=num_classes, bias=True)
|
23 |
+
)
|
24 |
+
|
25 |
+
return model, transforms
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
torch==2.4.0
|
2 |
+
torchvision==0.19.0
|
3 |
+
gradio==4.44.0
|