### 1. Imports and class names setup ### from model import create_vitB16_model import torch import os from typing import Tuple, Dict from timeit import default_timer as timer import gradio as gr # Setup class names class_names = ['pizza', 'steak', 'sushi'] ### 2. Model and transforms perparation ### model, model_transforms = create_vitB16_model(num_classes=len(class_names)) # Load save weights model.load_state_dict(torch.load(f='09_pretrained_vit_feature_extractor_pizza_steak_sushi_20_percent.pth', map_location='cpu')) # 3. Predict Function def predict(img) -> Tuple[Dict, float]: # Start a timer start_time = timer() # Transform the input image for use with vitB16 img = model_transforms(img).unsqueeze(dim=0) # Put model into eval mode, make prediction model.eval() with torch.inference_mode(): # Pass transformed image through the model and turn the prediction logits into probabilities pred_logit = model(img) pred_prob = torch.softmax(pred_logit, dim=1) # Create a prediction label and prediction probability dictionary pred_labels_and_probs = {class_names[i]: float(pred_prob[0][i]) for i in range(len(class_names))} # Calculate pred time end_time = timer() pred_time = round(end_time - start_time, 4) # Return pred dict and pred time return pred_labels_and_probs, pred_time ### 4. Gradio app ### # Create title, description and article title = "FoodVision Mini 🍕🥩🍣" description = "A [vision Transformer B16 feature extractor](https://pytorch.org/vision/stable/models/generated/torchvision.models.vit_b_16.html) computer vision model to classify images as pizza, steak or sushi." article = "Created with 🤎 (and a mixture of mathematics, statistics, and tons of calculations 👩🏽‍🔬)" # Create example list example_list = [["examples/" + example] for example in os.listdir("examples")] demo = gr.Interface(fn=predict, inputs=gr.Image(type='pil'), outputs=[gr.Label(num_top_classes=3, label='Predictions'), gr.Number(label="Prediction time (s)")], examples=example_list, title=title, description=description, article=article) # Launch the demo! demo.launch(debug=False) # print errors locally?